Project/Area Number |
17H06783
|
Research Category |
Grant-in-Aid for Research Activity Start-up
|
Allocation Type | Single-year Grants |
Research Field |
Algebra
|
Research Institution | Kyoto University |
Principal Investigator |
Hirano Yuki 京都大学, 理学研究科, 助教 (50804225)
|
Research Collaborator |
Ouchi Genki
|
Project Period (FY) |
2017-08-25 – 2019-03-31
|
Project Status |
Completed (Fiscal Year 2018)
|
Budget Amount *help |
¥2,210,000 (Direct Cost: ¥1,700,000、Indirect Cost: ¥510,000)
Fiscal Year 2018: ¥910,000 (Direct Cost: ¥700,000、Indirect Cost: ¥210,000)
Fiscal Year 2017: ¥1,300,000 (Direct Cost: ¥1,000,000、Indirect Cost: ¥300,000)
|
Keywords | 行列因子化 / 可逆多項式 / 高次行列因子化 / 特異点の三角圏 |
Outline of Final Research Achievements |
This is a joint work with Ouchi. We prove that the category of graded matrix factorizations of non-Thom--Sebastiani-type sum of certain polynomials has a semi-orthogonal decomposition, and as an application, we partially resolve a conjecture that is implied by categorical mirror symmetry conjecture between an invertible polynomial and its transpose. More precisely, we show that the category of maximally graded matrix factorizations of invertible polynomials of chain type has a full exceptional collection whose length equals to the Milnor number of its transpose.
|
Academic Significance and Societal Importance of the Research Achievements |
これまでは共通の変数を共有しないような2つの多項式の和で表される多項式の行列因子化の圏に関する結果しか知られていなかったが、本研究により変数を共有するような多項式の和で表されるような多項式の場合にも、その行列因子化の圏が良い分解を持つことが分かった。またその応用として得た鎖型の可逆多項式の行列因子化の圏が充満例外生成列を持つという結果は、これまで3変数以下の場合までしか知られていなかったものであり、圏論的ミラー対称性予想を支持するための新たな根拠を与えるものである。
|