Analysis of regulatory mechanism of nitric oxide synthesis and physiological role found in yeast
Project/Area Number |
17H06869
|
Research Category |
Grant-in-Aid for Research Activity Start-up
|
Allocation Type | Single-year Grants |
Research Field |
Molecular biology
|
Research Institution | Nara Institute of Science and Technology |
Principal Investigator |
Yoshikawa Yuki 奈良先端科学技術大学院大学, 先端科学技術研究科, 博士研究員 (30807483)
|
Project Period (FY) |
2017-08-25 – 2019-03-31
|
Project Status |
Completed (Fiscal Year 2018)
|
Budget Amount *help |
¥2,730,000 (Direct Cost: ¥2,100,000、Indirect Cost: ¥630,000)
Fiscal Year 2018: ¥1,300,000 (Direct Cost: ¥1,000,000、Indirect Cost: ¥300,000)
Fiscal Year 2017: ¥1,430,000 (Direct Cost: ¥1,100,000、Indirect Cost: ¥330,000)
|
Keywords | 一酸化窒素 / 酵母 / ペントースリン酸回路 / 6-ホスホグルコン酸脱水素酵素 / NADPH / 哺乳類ホモログ / メタカスパーゼ / Dre2 / Tah18-Dre2 / Ndor1-Ciapin1 / 鉄硫黄クラスター / 一酸化窒素合成 / フラボタンパク質Tah18 / 細胞死 |
Outline of Final Research Achievements |
Thorough the screening for identification of novel nitric oxide (NO) synthesis-related factor, we identified some of candidate. We measured intracellular NO production under hydrogen peroxide (H2O2) treatment condition in each strain, the deletion mutant of 6-phospho gluconate dehydrogenase (Gnd1) significantly inhibited to produce NO under H2O2 treatment condition. Moreover, intracellular NO production recovered by introduction of Gnd1, but not Gnd2 is a paralog of Gnd1. We construct the strain expressing Ndor1 and Ciapin1, which are mammalian homologous proteins of Tah18 and Dre2 in yeast Saccharomyces cerevisiae. Ndor1-Ciapin1 complex showed that identical function as Tah18-Dre2 in yeast growth, and Ndor1 complements Tah18-dependent NO synthesis in yeast cells. Moreover, Ndor1-Ciapin1 complex performed the same behavior that dissociated response to H2O2 treatment like as Tah18-Dre2 complex in yeast cells.
|
Academic Significance and Societal Importance of the Research Achievements |
これまで、ペントースリン酸回路はリボース合成を介した核酸合成への寄与と、それに伴いNADPHが産生され、酸化的環境下での還元力の供給に寄与することが知られていた。しかし、このとき合成されるNADPHが酸化ストレス条件下であるにも関わらず、活性窒素種である一酸化窒素の合成に必須である可能性が示された。細胞内の還元力の提供に関わる一方で、活性窒素種を生産する意義は未だ分かっていないが、非常に興味深い現象である。酸化的環境下での酵母の生存戦略を理解するうえで重要な知見となることが期待される。
|
Report
(3 results)
Research Products
(8 results)