• Search Research Projects
  • Search Researchers
  • How to Use
  1. Back to previous page

Theoretical construction and control of deep learning based on the geometry of hierarchical models

Research Project

Project/Area Number 17H07390
Research Category

Grant-in-Aid for Research Activity Start-up

Allocation TypeSingle-year Grants
Research Field Soft computing
Research InstitutionNational Institute of Advanced Industrial Science and Technology

Principal Investigator

Karakida Ryo  国立研究開発法人産業技術総合研究所, 情報・人間工学領域, 研究員 (30803902)

Project Period (FY) 2017-08-25 – 2019-03-31
Project Status Completed (Fiscal Year 2018)
Budget Amount *help
¥2,990,000 (Direct Cost: ¥2,300,000、Indirect Cost: ¥690,000)
Fiscal Year 2018: ¥1,560,000 (Direct Cost: ¥1,200,000、Indirect Cost: ¥360,000)
Fiscal Year 2017: ¥1,430,000 (Direct Cost: ¥1,100,000、Indirect Cost: ¥330,000)
Keywordsニューラルネットワーク / 機械学習 / 深層学習 / 数理工学 / 情報幾何 / 統計力学 / 人工知能 / ソフトコンピューティング
Outline of Final Research Achievements

This research project analyzed and developed learning algorithms in deep learning from the perspective of geometry. It led to a mathematical foundation and practical applications for deep learning without uncontrollable heuristics. In more details, we analyzed the Fisher information matrix of deep neural networks, which determines the geometry of the parameter space, and applied it to propose some gradient methods. Besides, we investigated singular regions of the parameter space caused by permutation symmetry of units. We revealed a condition where such singular region and the slowing down of training are avoidable. Moreover, we gave information geometric insight into Wasserstein distance with the entropy constraint and proposed a novel and more natural cost function based on it.

Academic Significance and Societal Importance of the Research Achievements

深層学習は実用ベースの開発が進み, 収束や解の性質が数理的に保証されていないヒューリスティクスへの依存が大きく, 恣意性が多く学習の制御が難しい問題がある. 本研究はこの問題に数理的な解決の基盤を与えている点で意義深い. 今後, 誰にでも使いやすい深層学習の開発につながることが期待できる. また, 学習の挙動に性能保証を与えることは, 安全性や信頼性が必要とされる実応用に深層学習を広げていくための土台となることも期待できる.

Report

(3 results)
  • 2018 Annual Research Report   Final Research Report ( PDF )
  • 2017 Annual Research Report
  • Research Products

    (20 results)

All 2019 2018 2017 Other

All Int'l Joint Research (1 results) Journal Article (7 results) (of which Int'l Joint Research: 1 results,  Peer Reviewed: 7 results,  Open Access: 4 results) Presentation (9 results) (of which Int'l Joint Research: 2 results,  Invited: 4 results) Book (1 results) Remarks (2 results)

  • [Int'l Joint Research] ENSAE(フランス)

    • Related Report
      2018 Annual Research Report
  • [Journal Article] Information geometry for regularized optimal transport and barycenters of patterns2019

    • Author(s)
      Shun-ichi Amari, Ryo Karakida, Masafumi Oizumi, Marco Cuturi
    • Journal Title

      Neural Computation

      Volume: 31 Issue: 5 Pages: 827

    • DOI

      10.1162/neco_a_01178

    • URL

      https://pure.teikyo.jp/en/publications/ba721c40-a021-427a-8aaf-ba041e2d9551

    • Related Report
      2018 Annual Research Report
    • Peer Reviewed / Int'l Joint Research
  • [Journal Article] Fisher Information and Natural Gradient Learning in Random Deep Networks2019

    • Author(s)
      Shun-ichi Amari, Ryo Karakida, Masafumi Oizumi
    • Journal Title

      Proceedings of Machine Learning Research (AISTATS)

      Volume: 89 Pages: 694-702

    • Related Report
      2018 Annual Research Report
    • Peer Reviewed / Open Access
  • [Journal Article] Universal Statistics of Fisher Information in Deep Neural Networks: Mean Field Approach2019

    • Author(s)
      Ryo Karakida, Shotaro Akaho, Shun-ichi Amari
    • Journal Title

      Proceedings of Machine Learning Research (AISTATS)

      Volume: 89 Pages: 1032-1041

    • Related Report
      2018 Annual Research Report
    • Peer Reviewed / Open Access
  • [Journal Article] Statistical mechanical analysis of learning dynamics of two-layer perceptron with multiple output units2019

    • Author(s)
      Yuki Yoshida, Ryo Karakida, Masato Okada, Shun-ichi Amari
    • Journal Title

      Journal of Physics A: Mathematical and Theoretical

      Volume: 52 Pages: 1-17

    • Related Report
      2018 Annual Research Report
    • Peer Reviewed / Open Access
  • [Journal Article] Dynamics of Learning in MLP: Natural Gradient and Singularity Revisited2018

    • Author(s)
      Amari Shun-ichi、Ozeki Tomoko、Karakida Ryo、Yoshida Yuki、Okada Masato
    • Journal Title

      Neural Computation

      Volume: 30 Issue: 1 Pages: 1-33

    • DOI

      10.1162/neco_a_01029

    • Related Report
      2017 Annual Research Report
    • Peer Reviewed
  • [Journal Article] Information geometry connecting Wasserstein distance and Kullback–Leibler divergence via the entropy-relaxed transportation problem2018

    • Author(s)
      Amari Shun-ichi、Karakida Ryo、Oizumi Masafumi
    • Journal Title

      Information Geometry

      Volume: 1 Issue: 1 Pages: 13

    • DOI

      10.1007/s41884-018-0002-8

    • URL

      https://pure.teikyo.jp/en/publications/6e036b13-9109-4aea-82f9-93fe3771c474

    • Related Report
      2017 Annual Research Report
    • Peer Reviewed / Open Access
  • [Journal Article] Information Geometry of Wasserstein Divergence2017

    • Author(s)
      Karakida Ryo、Amari Shun-ichi
    • Journal Title

      Proceedings of Geometric Science of Information

      Volume: - Pages: 119-126

    • DOI

      10.1007/978-3-319-68445-1_14

    • ISBN
      9783319684444, 9783319684451
    • Related Report
      2017 Annual Research Report
    • Peer Reviewed
  • [Presentation] ランダム深層ニューラルネットの摂動に対する応答の普遍性2019

    • Author(s)
      唐木田亮, 赤穂昭太郎, 甘利俊一
    • Organizer
      日本物理学会第74回年次大会
    • Related Report
      2018 Annual Research Report
  • [Presentation] 層ニューラルネットワークにおけるFisher情報行列の普遍性2018

    • Author(s)
      唐木田亮
    • Organizer
      第30回RAMPシンポジウム
    • Related Report
      2018 Annual Research Report
    • Invited
  • [Presentation] 機械学習から見たニューラルネットワークの数理2018

    • Author(s)
      唐木田亮
    • Organizer
      東京理科大学 脳学際研究部門 第2回公開シンポジウム "脳のサイエンス"
    • Related Report
      2018 Annual Research Report
    • Invited
  • [Presentation] Theoretical analysis of RBMs with Gaussian visible units - Dynamical analysis and Riemannian optimization -2018

    • Author(s)
      Ryo Karakida
    • Organizer
      Americal Institute of Mathematics (AIM) workshop "Boltzmann machines"
    • Related Report
      2018 Annual Research Report
    • Int'l Joint Research / Invited
  • [Presentation] 深層ニューラルネットワークにおけるFisher情報行列の普遍性2018

    • Author(s)
      唐木田亮, 赤穂昭太郎, 甘利俊一
    • Organizer
      IBIS2018
    • Related Report
      2018 Annual Research Report
  • [Presentation] 深層ニューラルネットワークの数理: 平均場理論の視点2018

    • Author(s)
      唐木田亮
    • Organizer
      産総研AIセミナー
    • Related Report
      2018 Annual Research Report
  • [Presentation] ランダム深層ニューラルネットワークにおけるFisher情報行列の巨視的理論2018

    • Author(s)
      唐木田亮、赤穂昭太郎、甘利俊一
    • Organizer
      日本物理学会年次大会
    • Related Report
      2017 Annual Research Report
  • [Presentation] Information Geometry of Wasserstein Divergence2017

    • Author(s)
      Ryo Karakida、Shun-ichi Amari
    • Organizer
      Geometric Science of Information
    • Related Report
      2017 Annual Research Report
    • Int'l Joint Research
  • [Presentation] エントロピー正則化付きWasserstein距離の情報幾何2017

    • Author(s)
      唐木田亮
    • Organizer
      第64回幾何学シンポジウム
    • Related Report
      2017 Annual Research Report
    • Invited
  • [Book] 数理科学 (深層学習の数理)2018

    • Author(s)
      唐木田亮, 麻生英樹
    • Total Pages
      8
    • Publisher
      サイエンス社
    • Related Report
      2018 Annual Research Report
  • [Remarks] 研究代表者web site

    • URL

      https://sites.google.com/view/ryokarakida/

    • Related Report
      2018 Annual Research Report
  • [Remarks] 唐木田亮ウェブサイト

    • URL

      https://sites.google.com/view/ryokarakida/

    • Related Report
      2017 Annual Research Report

URL: 

Published: 2017-08-25   Modified: 2020-03-30  

Information User Guide FAQ News Terms of Use Attribution of KAKENHI

Powered by NII kakenhi