• Search Research Projects
  • Search Researchers
  • How to Use
  1. Back to previous page

Verification of Properties of Classical Calculi

Research Project

Project/Area Number 17K00005
Research Category

Grant-in-Aid for Scientific Research (C)

Allocation TypeMulti-year Fund
Section一般
Research Field Theory of informatics
Research InstitutionChiba University

Principal Investigator

SAKURAI Takafumi  千葉大学, 大学院理学研究院, 教授 (60183373)

Co-Investigator(Kenkyū-buntansha) 菊池 健太郎  東北大学, 電気通信研究所, 助教 (40396528)
Project Period (FY) 2017-04-01 – 2024-03-31
Project Status Completed (Fiscal Year 2023)
Budget Amount *help
¥3,900,000 (Direct Cost: ¥3,000,000、Indirect Cost: ¥900,000)
Fiscal Year 2020: ¥1,040,000 (Direct Cost: ¥800,000、Indirect Cost: ¥240,000)
Fiscal Year 2019: ¥1,040,000 (Direct Cost: ¥800,000、Indirect Cost: ¥240,000)
Fiscal Year 2018: ¥910,000 (Direct Cost: ¥700,000、Indirect Cost: ¥210,000)
Fiscal Year 2017: ¥910,000 (Direct Cost: ¥700,000、Indirect Cost: ¥210,000)
Keywordsラムダ計算 / α同値 / 古典論理 / 証明検証系 / minlog / 直観主義論理 / 数理論理学 / 検証
Outline of Final Research Achievements

The purpose of this research is to study various properties of computational systems based on classical logic. But, in the process of first proving the properties of traditional lambda calculus, which is the foundation of this, using the verification system minlog, we realized that there is a new proof of the well-known theorem that α-reduction becomes an equivalence relation. The symmetry law is the most difficult to prove when proving that an equivalence relation exists, but by closely analyzing the renaming required when performing α-reduction, we can accurately determine the order in which variable collision avoidance occurs. Then, we can decompose the variable renaming required for collision avoidance into simpler ones, and by tracing them in reverse, we can construct an α-reduction that reverses the α-reduction of interest.

Academic Significance and Societal Importance of the Research Achievements

伝統的ラムダ計算は20世紀初頭から研究されており、現代の多くの計算系の土台になるものである。伝統的ラムダ計算においてα簡約が同値関係になるという基本的な定理は古くからよく知られており様々な方法で証明されているが、それにも関わらずまだ新しい証明があることは驚きであった。α簡約では変数の衝突を防ぐために変数の名前替えを行うが、それは代入の特別な場合とみなすことができ、代入の過程を詳しく把握することにより変数の名前替えを単純なものに分解し、それを利用してα簡約の性質を考えるというアプローチは今までに見られなかったアイディアであり、変数の名前替えについて新しい知見を得ることができた。

Report

(8 results)
  • 2023 Annual Research Report   Final Research Report ( PDF )
  • 2022 Research-status Report
  • 2021 Research-status Report
  • 2020 Research-status Report
  • 2019 Research-status Report
  • 2018 Research-status Report
  • 2017 Research-status Report
  • Research Products

    (4 results)

All 2020 2019 2018 2017

All Journal Article (3 results) (of which Int'l Joint Research: 2 results,  Peer Reviewed: 3 results,  Open Access: 2 results) Presentation (1 results)

  • [Journal Article] Polymorphic computation systems: Theory and practice of confluence with call-by-value2020

    • Author(s)
      Makoto Hamana, Tatsuya Abe, Kentaro Kikuchi
    • Journal Title

      Science of Computer Programming

      Volume: 187 Pages: 102322-102322

    • DOI

      10.1016/j.scico.2019.102322

    • Related Report
      2019 Research-status Report
    • Peer Reviewed / Open Access / Int'l Joint Research
  • [Journal Article] Inductive Theorem Proving in Non-terminating Rewriting Systems and Its Application to Program Transformation2019

    • Author(s)
      Kentaro Kikuchi, Takahito Aoto, Isao Sasano
    • Journal Title

      Proceedings of the 21st International Symposium on Principles and Practice of Declarative Programming (PPDP 2019)

      Volume: 21 Pages: 1-14

    • DOI

      10.1145/3354166.3354178

    • Related Report
      2019 Research-status Report
    • Peer Reviewed / Open Access / Int'l Joint Research
  • [Journal Article] Parallel Closure Theorem for Left-Linear Nominal Rewriting Systems2017

    • Author(s)
      Kentaro Kikuchi, Takahito Aoto and Yoshihito Toyama
    • Journal Title

      Proceedings of the 11th International Symposium on Frontiers of Combining Systems (FroCoS 2017)

      Volume: 10483 Pages: 115-131

    • DOI

      10.1007/978-3-319-66167-4_7

    • ISBN
      9783319661667, 9783319661674
    • Related Report
      2017 Research-status Report
    • Peer Reviewed
  • [Presentation] 無限のデータを含む等式に対する帰納的定理証明2018

    • Author(s)
      菊池健太郎, 篠埜功
    • Organizer
      日本ソフトウェア科学会第35回大会
    • Related Report
      2018 Research-status Report

URL: 

Published: 2017-04-28   Modified: 2025-01-30  

Information User Guide FAQ News Terms of Use Attribution of KAKENHI

Powered by NII kakenhi