Project/Area Number |
17K00020
|
Research Category |
Grant-in-Aid for Scientific Research (C)
|
Allocation Type | Multi-year Fund |
Section | 一般 |
Research Field |
Theory of informatics
|
Research Institution | Tokyo City University |
Principal Investigator |
|
Co-Investigator(Kenkyū-buntansha) |
八木 秀樹 電気通信大学, 大学院情報理工学研究科, 准教授 (60409737)
細谷 剛 東京理科大学, 工学部情報工学科, 講師 (60514403)
|
Project Period (FY) |
2017-04-01 – 2020-03-31
|
Project Status |
Completed (Fiscal Year 2019)
|
Budget Amount *help |
¥3,380,000 (Direct Cost: ¥2,600,000、Indirect Cost: ¥780,000)
Fiscal Year 2019: ¥780,000 (Direct Cost: ¥600,000、Indirect Cost: ¥180,000)
Fiscal Year 2018: ¥1,300,000 (Direct Cost: ¥1,000,000、Indirect Cost: ¥300,000)
Fiscal Year 2017: ¥1,300,000 (Direct Cost: ¥1,000,000、Indirect Cost: ¥300,000)
|
Keywords | 判定帰還(ARQ)方式 / 誤り指数 / Shulman-Feder上界式 / 線形符号 / LDPC符号 / 判定基準 / レギュラー通信路 / DS2上界式 / 判定帰還方式 / S2上界式 / 誤り確率の上界式 / 符号化定理 / 計算量 |
Outline of Final Research Achievements |
In this study, in the decision feedback (ARQ) method using the feedback channel, the decision criterion of the decision feedback method (strict decision criterion and simplified decision criterion) is applied to the ensemble of linear codes and LDPC codes. Then, we derived the error exponent and the upper bound of the error probability for a finite code length. Then, since the results of evaluating the error probability more precisely than the conventional analysis, it was shown that the same error probability can be achieved with a shorter code length. If a code with a shorter code length can be used, the amount of calculation can be reduced. Therefore, in this study, it was clarified that the effect of reducing the amount of calculation by the decision feedback method is larger than the result evaluated in the conventional research.
|
Academic Significance and Societal Importance of the Research Achievements |
本研究では帰還通信路を用いた判定帰還(ARQ)方式において,線形符号,LDPC符号を用いた判定帰還方式に対し,誤り指数の導出および有限の符号長における誤り確率上界の精密な導出を試みた.その結果,同じ誤り確率に対し,従来よりも短い符号長の符号が利用できることが明らかとなり,短い符号長を用いた場合の計算量低減の効果が判明した.計算量の削減効果は携帯端末の消費電力の低減を評価する意味で重要である.また,従来の研究では2元線形符号が用いらていたが,本研究ではレギュラー通信路とq元符号を用いた解析を行った.この一般化は,フラッシュメモリなど,多元の記憶媒体への応用を考慮する上で重要と考えられる.
|