• Search Research Projects
  • Search Researchers
  • How to Use
  1. Back to previous page

Development of an improved method for selective recording of execution history and its new applications

Research Project

Project/Area Number 17K00096
Research Category

Grant-in-Aid for Scientific Research (C)

Allocation TypeMulti-year Fund
Section一般
Research Field Software
Research InstitutionKanazawa University

Principal Investigator

Sakurai Kohei  金沢大学, 電子情報通信学系, 助教 (80597021)

Project Period (FY) 2017-04-01 – 2020-03-31
Project Status Completed (Fiscal Year 2019)
Budget Amount *help
¥3,120,000 (Direct Cost: ¥2,400,000、Indirect Cost: ¥720,000)
Fiscal Year 2019: ¥650,000 (Direct Cost: ¥500,000、Indirect Cost: ¥150,000)
Fiscal Year 2018: ¥1,300,000 (Direct Cost: ¥1,000,000、Indirect Cost: ¥300,000)
Fiscal Year 2017: ¥1,170,000 (Direct Cost: ¥900,000、Indirect Cost: ¥270,000)
Keywords大規模データ処理 / アクターモデル / 機械学習 / プログラム解析 / 実行履歴 / ソフトウエア開発効率化 / ソフトウェア工学 / プログラミング
Outline of Final Research Achievements

In this study, we considered methods for large scale data processing, and we proposed and developed a method for data processing in tree models with the parallel and distributed environment using the actor model. Our method can cope with multiple models including online classification trees and hierarchical clustering with a design pattern which describes tree nodes as actors, and we showed that it can effiicently handle actula large scale data inputs from our experiments.

Academic Significance and Societal Importance of the Research Achievements

本研究の成果は既存の機械学習アルゴリズムを大規模なデータにシームレスに対応させるための手法を提案している. 提案手法によりデータの分類やクラスタリングなどを扱うシステム開発が, 多くの開発者が慣れ親しんだ手法により理解しやすいモデルの定義によって迅速に行うことが可能となる. 結果としてデータの分析に関する多くの変更や性能の向上に関する要求に対応が容易となる.

Report

(4 results)
  • 2019 Annual Research Report   Final Research Report ( PDF )
  • 2018 Research-status Report
  • 2017 Research-status Report
  • Research Products

    (3 results)

All 2019 2018 2017

All Journal Article (1 results) (of which Peer Reviewed: 1 results,  Open Access: 1 results) Presentation (2 results) (of which Int'l Joint Research: 1 results)

  • [Journal Article] Actor-based incremental tree data processing for large-scale machine learning applications2019

    • Author(s)
      Sakurai Kouhei、Shimizu Taiki
    • Journal Title

      AGERE 2019: Proceedings of the 9th ACM SIGPLAN International Workshop on Programming Based on Actors, Agents, and Decentralized Control

      Volume: 1 Pages: 1-10

    • DOI

      10.1145/3358499.3361220

    • Related Report
      2019 Annual Research Report
    • Peer Reviewed / Open Access
  • [Presentation] Comprehensive Data Tree by Actor Messaging for Incremental Hierarchical Clustering2018

    • Author(s)
      Taiki Shimizu, Kohei Sakurai
    • Organizer
      IEEE COMPSAC2018
    • Related Report
      2018 Research-status Report
    • Int'l Joint Research
  • [Presentation] アクターモデルを適用した木構造データ処理のための状態共有を利用した負荷分散2017

    • Author(s)
      櫻井孝平
    • Organizer
      電子情報通信学会 知能ソフトウェア工学研究会
    • Related Report
      2017 Research-status Report

URL: 

Published: 2017-04-28   Modified: 2021-02-19  

Information User Guide FAQ News Terms of Use Attribution of KAKENHI

Powered by NII kakenhi