• Search Research Projects
  • Search Researchers
  • How to Use
  1. Back to previous page

Automatic detection of abnormal ECG based on linkage pattern mining

Research Project

Project/Area Number 17K00373
Research Category

Grant-in-Aid for Scientific Research (C)

Allocation TypeMulti-year Fund
Section一般
Research Field Kansei informatics
Research InstitutionMuroran Institute of Technology

Principal Investigator

Okada Yoshifumi  室蘭工業大学, 大学院工学研究科, 准教授 (00443177)

Project Period (FY) 2017-04-01 – 2020-03-31
Project Status Completed (Fiscal Year 2019)
Budget Amount *help
¥3,770,000 (Direct Cost: ¥2,900,000、Indirect Cost: ¥870,000)
Fiscal Year 2019: ¥910,000 (Direct Cost: ¥700,000、Indirect Cost: ¥210,000)
Fiscal Year 2018: ¥1,430,000 (Direct Cost: ¥1,100,000、Indirect Cost: ¥330,000)
Fiscal Year 2017: ¥1,430,000 (Direct Cost: ¥1,100,000、Indirect Cost: ¥330,000)
Keywords心電図 / 連鎖パタンマイニング / 畳み込みニューラルネットワーク / 2D-CNN / 心室期外収縮 / 連鎖パタン / 異常検出 / 系列パタンマイニング
Outline of Final Research Achievements

The aim of this study was to develop a linkage pattern mining method for automatically detecting abnormal waveform region in ECG data. First, the existing linkage pattern mining method was improved to a faster and more accurate method. In an experiment of applying a program implementing the improved method to real ECG data, it was shown that normal/abnormal ECG regions were partitioned adequately and displayed visually. Furthermore, it was presented that the normal/abnormal ECG waveforms can be available as an effective training dataset in classification model construction based on machine learning.

Academic Significance and Societal Importance of the Research Achievements

本研究で開発した技術は,医療現場のスタッフが心電図を用いて心疾患を迅速に診断するための有効な支援ツールとなりえる.また,既存の機械学習を用いた心電図解析では正常/異常の訓練データは手作業で収集されており,この作業には専門的な知識と多大な時間が必要とされていた.一方,本研究で開発した技術は,正常/異常な心電図波形を自動で高速に特定できるため,今後の心電図解析研究を大きく加速・進展できると期待される.

Report

(4 results)
  • 2019 Annual Research Report   Final Research Report ( PDF )
  • 2018 Research-status Report
  • 2017 Research-status Report
  • Research Products

    (12 results)

All 2019 2018 2017

All Journal Article (2 results) (of which Peer Reviewed: 2 results,  Open Access: 1 results) Presentation (10 results) (of which Int'l Joint Research: 3 results)

  • [Journal Article] Linkage Pattern Mining using Interval and Order of Pattern Appearance2019

    • Author(s)
      Saerom Lee, Kaiji Sugimoto, and Yoshifumi Okada
    • Journal Title

      IAENG International Journal of Computer Science

      Volume: 46 Pages: 691-698

    • Related Report
      2019 Annual Research Report
    • Peer Reviewed / Open Access
  • [Journal Article] Detection and localization of myocardial infarction based on a convolutional autoencoder2019

    • Author(s)
      Kaiji Sugimoto, Yudai Kon, Saerom Lee, and Yoshifumi Okada
    • Journal Title

      Knowledge-based systems

      Volume: 178 Pages: 123-131

    • DOI

      10.1016/j.knosys.2019.04.023

    • Related Report
      2019 Annual Research Report 2018 Research-status Report
    • Peer Reviewed
  • [Presentation] 心電図データを用いた心室期外収縮の自動検出2019

    • Author(s)
      小林哲平,金憂大,岡田吉史
    • Organizer
      日本感性工学会 生命ソフトウェア・感性工房 合同シンポジウム2019
    • Related Report
      2019 Annual Research Report
  • [Presentation] 心電図のR-R間隔画像への2次元畳み込みニューラルネットワークの適用と致死性不整脈の識別2019

    • Author(s)
      牧野晃希,金憂大,岡田吉史
    • Organizer
      日本感性工学会 生命ソフトウェア・感性工房 合同シンポジウム2019
    • Related Report
      2019 Annual Research Report
  • [Presentation] 畳み込みニューラルネットワークを用いた心筋梗塞の検出および梗塞部位の特定2019

    • Author(s)
      金憂大,岡田吉史
    • Organizer
      日本感性工学会 生命ソフトウェア・感性工房 合同シンポジウム2019
    • Related Report
      2019 Annual Research Report
  • [Presentation] Discrimination of ECG Abnormality based on a Normal ECG Wave Model Implementing a Denoising Model2019

    • Author(s)
      Kaiji Sugimoto, Saerom Lee and Yoshifumi Okada
    • Organizer
      IMECS2019
    • Related Report
      2018 Research-status Report
    • Int'l Joint Research
  • [Presentation] パタン出現の間隔と順序を考慮した連鎖パタンマイニングに関する研究2019

    • Author(s)
      李セロン,杉本階嗣,岡田吉史
    • Organizer
      第14回日本感性工学会春季大会
    • Related Report
      2018 Research-status Report
  • [Presentation] 実数値の系列データを対象としたノイズに頑健な頻出パタンマイニング手法2018

    • Author(s)
      米谷柊太郎,杉本階嗣,李セロン,岡田吉史
    • Organizer
      生命ソフトウェア・感性工房・而立の会合同シンポジウム2018
    • Related Report
      2018 Research-status Report
  • [Presentation] Convolutional Autoencoderを用いた心電図波形モデルの構築と病気診断への応用2018

    • Author(s)
      杉本階嗣,李セロン,岡田吉史
    • Organizer
      生命ソフトウェア・感性工房・而立の会合同シンポジウム2018
    • Related Report
      2018 Research-status Report
  • [Presentation] Deep Learning-based Detection of Periodic Abnormal Waves in ECG Data2018

    • Author(s)
      Kaiji Sugimoto, Saerom Lee and Yoshifumi Okada
    • Organizer
      IMECS2018
    • Related Report
      2017 Research-status Report
    • Int'l Joint Research
  • [Presentation] 連鎖パタンマイニングの心電図データへの適用2018

    • Author(s)
      岡田吉史,李セロン
    • Organizer
      第13回日本感性工学会春季大会
    • Related Report
      2017 Research-status Report
  • [Presentation] Detection of Abnormal ECG Waveform Based on Linkage Pattern Mining2017

    • Author(s)
      Saerom Lee, Kaiji Sugimoto and Yoshifumi Okada
    • Organizer
      ICBAKE2017
    • Related Report
      2017 Research-status Report
    • Int'l Joint Research

URL: 

Published: 2017-04-28   Modified: 2021-02-19  

Information User Guide FAQ News Terms of Use Attribution of KAKENHI

Powered by NII kakenhi