• Search Research Projects
  • Search Researchers
  • How to Use
  1. Back to previous page

Research on intelligent user interface for clinical decision support systems

Research Project

Project/Area Number 17K00425
Research Category

Grant-in-Aid for Scientific Research (C)

Allocation TypeMulti-year Fund
Section一般
Research Field Life / Health / Medical informatics
Research InstitutionKitami Institute of Technology (2018-2019)
National Institute of Public Health (2017)

Principal Investigator

OKUMURA TAKASHI  北見工業大学, 工学部, 教授 (50553400)

Project Period (FY) 2017-04-01 – 2020-03-31
Project Status Completed (Fiscal Year 2019)
Budget Amount *help
¥4,550,000 (Direct Cost: ¥3,500,000、Indirect Cost: ¥1,050,000)
Fiscal Year 2019: ¥780,000 (Direct Cost: ¥600,000、Indirect Cost: ¥180,000)
Fiscal Year 2018: ¥1,950,000 (Direct Cost: ¥1,500,000、Indirect Cost: ¥450,000)
Fiscal Year 2017: ¥1,820,000 (Direct Cost: ¥1,400,000、Indirect Cost: ¥420,000)
Keywords医療用人工知能 / ユーザーインターフェース / 疾患類似度 / 診断支援システム
Outline of Final Research Achievements

The Medical AI research has developed mainly focusing diagnostic algorithms. Accordingly, there has been a lack of research that addresses user interface issues that realize efficient input of patient information, effective output of diagnostic results, and methods that integrate multiple diagnostic algorithms. Our research project addressed the user interface of clinical decision support systems, and performed an exploratory study of user interfaces that facilitate physicians input and produce inspiring outputs, together with an investigation of efficient integration of the input and the output toward improved diagnostic performance. Our achievements include an estimation method of physicians' disease knowledge volume, two-dimensional representations of relationships between dieases, and contributions in medical natural language processing, which enable efficient interaction between a compueter and a physician.

Academic Significance and Societal Importance of the Research Achievements

診断支援用AI研究は、診断アルゴリズムの研究開発を中心に発展してきたことで、その入力や出力に求められる基礎的な知見の蓄積を欠きがちであった。我々の研究成果により、医師それぞれの知識において欠けている箇所を補うように機能する、医師と補完的な役割を担う医療用人工知能の研究開発が実現する。また、患者情報の入力に際した非効率は、この分野において30年以上も指摘されている問題であり、自然言語処理による解決に向けた貢献を果たすことができた。さらに、診断結果の出力と再計算においても、効率的な手法を提案することができた。

Report

(4 results)
  • 2019 Annual Research Report   Final Research Report ( PDF )
  • 2018 Research-status Report
  • 2017 Research-status Report
  • Research Products

    (8 results)

All 2020 2019 2018 2017 Other

All Int'l Joint Research (1 results) Journal Article (1 results) (of which Int'l Joint Research: 1 results,  Peer Reviewed: 1 results,  Open Access: 1 results) Presentation (6 results) (of which Int'l Joint Research: 2 results)

  • [Int'l Joint Research] 香港城市大学(香港)

    • Related Report
      2017 Research-status Report
  • [Journal Article] Disease vocabulary size as a surrogate marker for physicians’ disease knowledge volume2018

    • Author(s)
      Tanaka Hiroaki、Ueda Kazuhiro、Watanuki Satoshi、Watari Takashi、Tokuda Yasuharu、Okumura Takashi
    • Journal Title

      PLOS ONE

      Volume: 13 Issue: 12 Pages: 1-19

    • DOI

      10.1371/journal.pone.0209551

    • Related Report
      2018 Research-status Report
    • Peer Reviewed / Open Access / Int'l Joint Research
  • [Presentation] 疾患類似度の距離マトリックス生成に向けた監査手法の提案2020

    • Author(s)
      平林 宗一郎, 才川 隆文, 早川 吉彦, 奥村 貴史
    • Organizer
      第119回知識ベースシステム研究会
    • Related Report
      2019 Annual Research Report
  • [Presentation] 確信度に基づく退院時サマリの分析2019

    • Author(s)
      安道 健一郎、奥村 貴史、小町 守、松本 裕治
    • Organizer
      情報処理学会NL研
    • Related Report
      2019 Annual Research Report
  • [Presentation] 疾患間類似度計算における分散表現の活用手法2019

    • Author(s)
      大村 舞, 松本 裕治, 奥村貴史
    • Organizer
      言語処理学会第25回年次大会(NLP2019)
    • Related Report
      2019 Annual Research Report 2018 Research-status Report
  • [Presentation] 電子カルテのLSTMによる自動匿名化と手法間およびデータセット間の比較2019

    • Author(s)
      梶山晃平, 堀口裕正, 奥村貴史, 森田瑞樹, 狩野芳伸
    • Organizer
      第1回日本メディカルAI学会学術集会
    • Related Report
      2019 Annual Research Report
  • [Presentation] Geometrical mapping of diseases with calculated similarity measure2017

    • Author(s)
      Y. Yaguchi, M. Omura, and T. Okumura
    • Organizer
      2017 IEEE International Conference on Bioinformatics and Biomedicine (BIBM 2017)
    • Related Report
      2017 Research-status Report
    • Int'l Joint Research
  • [Presentation] Differential diagnosis listing as relevance feedback - An essential user interface for clinical decision support systems2017

    • Author(s)
      T. Okumura, T. Kajiyama, and N. Sonehara
    • Organizer
      The 30th IEEE International Symposium on Computer-Based Medical Systems (CBMS 2017)
    • Related Report
      2017 Research-status Report
    • Int'l Joint Research

URL: 

Published: 2017-04-28   Modified: 2022-02-22  

Information User Guide FAQ News Terms of Use Attribution of KAKENHI

Powered by NII kakenhi