Project/Area Number |
17K00741
|
Research Category |
Grant-in-Aid for Scientific Research (C)
|
Allocation Type | Multi-year Fund |
Section | 一般 |
Research Field |
Design science
|
Research Institution | Mukogawa Women's University |
Principal Investigator |
|
Project Period (FY) |
2017-04-01 – 2021-03-31
|
Project Status |
Discontinued (Fiscal Year 2020)
|
Budget Amount *help |
¥4,550,000 (Direct Cost: ¥3,500,000、Indirect Cost: ¥1,050,000)
Fiscal Year 2020: ¥650,000 (Direct Cost: ¥500,000、Indirect Cost: ¥150,000)
Fiscal Year 2019: ¥780,000 (Direct Cost: ¥600,000、Indirect Cost: ¥180,000)
Fiscal Year 2018: ¥780,000 (Direct Cost: ¥600,000、Indirect Cost: ¥180,000)
Fiscal Year 2017: ¥2,340,000 (Direct Cost: ¥1,800,000、Indirect Cost: ¥540,000)
|
Keywords | 桟瓦 / 主成分分析 / 変曲点 / 可積分離散化 / 弾性曲線 / 竹編み / 丸子船 / 写真測量 / 平均値の定理 / 相似 / 等間隔 / 点列 / 開多角形 / 曲線あてはめ / 定式化 / 非対称 / 線分 / 頂点 / 3Dレーザースキャナ / キーライン / 平面あてはめ / 座標変換 / 点群 / 重心 / 座標系 / 曲線 / セグメント / 美的曲線 |
Outline of Final Research Achievements |
The main subject of this study was sangawara (Japanese pantiles), which has curve segments that have composed Japan's unique landscape. Specifically, we measured handmade sangawara actually used in a house in Osaka Prefecture and extracted the upper and lower two edges as keylines. These were transformed into plane figures by applying plane fitting and coordinate transformation using principal component analysis. After that, the keylines were replaced by equally spaced point sequences using equilateral open polygon approximations, and global inflection points were estimated. After dividing each keyline by inflection point, we also studied formulations using integrable discrete analogue of Euler's elasticae. As for curve segments other than sangawara, we also focused on bamboo weaving and maruko boats. We showed the possibility of new architectural designs based on curved surfaces made through bamboo weaving and photogrammetric result obtained with a maruko boat.
|
Academic Significance and Societal Importance of the Research Achievements |
主成分分析による平面あてはめと座標変換、等辺開多角形近似、Ramer-Douglas-Peuckerアルゴリズムから着想を得た大局的な変曲点の推定、可積分離散化されたEularの弾性曲線を用いた定式化といった、今後さまざまな種類の曲線セグメントの定式化に応用可能な手法を示した。また互いに相似な対数型美的曲線を接続して曲率連続とできる条件、竹編みの技法を用いた建築模型の制作手法、写真測量と3Dモデルによる曲面の再現といった、さまざまな建築・景観設計へと応用可能な知見も得られた。
|