Development of explosion safety evaluation technology for liquid hydrogen using rocket engine combustion symulation method
Project/Area Number |
17K01318
|
Research Category |
Grant-in-Aid for Scientific Research (C)
|
Allocation Type | Multi-year Fund |
Section | 一般 |
Research Field |
Social systems engineering/Safety system
|
Research Institution | Japan Aerospace EXploration Agency |
Principal Investigator |
Daimon Yu 国立研究開発法人宇宙航空研究開発機構, 研究開発部門, 主任研究開発員 (90415901)
|
Co-Investigator(Kenkyū-buntansha) |
藤本 圭一郎 国立研究開発法人宇宙航空研究開発機構, 研究開発部門, 研究開発員 (20446602)
谷 洋海 国立研究開発法人宇宙航空研究開発機構, 研究開発部門, 研究開発員 (80633784)
|
Project Period (FY) |
2017-04-01 – 2022-03-31
|
Project Status |
Completed (Fiscal Year 2021)
|
Budget Amount *help |
¥4,550,000 (Direct Cost: ¥3,500,000、Indirect Cost: ¥1,050,000)
Fiscal Year 2019: ¥1,430,000 (Direct Cost: ¥1,100,000、Indirect Cost: ¥330,000)
Fiscal Year 2018: ¥1,430,000 (Direct Cost: ¥1,100,000、Indirect Cost: ¥330,000)
Fiscal Year 2017: ¥1,690,000 (Direct Cost: ¥1,300,000、Indirect Cost: ¥390,000)
|
Keywords | 液体水素 / 着火 / 極低温流体 / 衝撃波 / 水素 / 火災 / シミュレーション工学 / ロケット |
Outline of Final Research Achievements |
This study aims to elucidate the explosion mechanism (ignition and flame propagation phenomena) of a massive leak of liquid hydrogen and to establish prediction techniques. In particular, three types of basic tests are proposed to clarify the ignition mechanism. In the basic tests, we will focus on the bubble contraction mechanism and conduct ignition tests by simulating the phase change caused by temperature difference and compression by shock waves. This enables the estimation of the ignition mechanism to be verified in the basic tests, which has only been studied on a theoretical basis in past research. This will make it possible to identify important physical phenomena, predict the explosion power of a liquid hydrogen leak, and study storage and transportation methods to reduce the power.
|
Academic Significance and Societal Importance of the Research Achievements |
3種類の基礎試験を通して,最終的に着火を確認することはできなかったが,各物理現象に要する時間,着火に必要な条件,重要物理現象を識別することができた.これらは安全工学上学術的に価値があるだけでなく,今後実施する大規模実験を安全,確実に実行する上で非常に重要である.また,本研究で解明する爆発メカニズムは,液体水素が液体酸素へ吹き込まれる状況だけではなく,液体水素が海水など別の液体に吹き込まれ,且つ予混合ガスが存在する状況にも共通して起きうることがわかった.つまり,液体水素の大量漏洩が生じうる状況の爆発安全評価にも資することができる.
|
Report
(6 results)
Research Products
(3 results)