• Search Research Projects
  • Search Researchers
  • How to Use
  1. Back to previous page

Development of explosion safety evaluation technology for liquid hydrogen using rocket engine combustion symulation method

Research Project

Project/Area Number 17K01318
Research Category

Grant-in-Aid for Scientific Research (C)

Allocation TypeMulti-year Fund
Section一般
Research Field Social systems engineering/Safety system
Research InstitutionJapan Aerospace EXploration Agency

Principal Investigator

Daimon Yu  国立研究開発法人宇宙航空研究開発機構, 研究開発部門, 主任研究開発員 (90415901)

Co-Investigator(Kenkyū-buntansha) 藤本 圭一郎  国立研究開発法人宇宙航空研究開発機構, 研究開発部門, 研究開発員 (20446602)
谷 洋海  国立研究開発法人宇宙航空研究開発機構, 研究開発部門, 研究開発員 (80633784)
Project Period (FY) 2017-04-01 – 2022-03-31
Project Status Completed (Fiscal Year 2021)
Budget Amount *help
¥4,550,000 (Direct Cost: ¥3,500,000、Indirect Cost: ¥1,050,000)
Fiscal Year 2019: ¥1,430,000 (Direct Cost: ¥1,100,000、Indirect Cost: ¥330,000)
Fiscal Year 2018: ¥1,430,000 (Direct Cost: ¥1,100,000、Indirect Cost: ¥330,000)
Fiscal Year 2017: ¥1,690,000 (Direct Cost: ¥1,300,000、Indirect Cost: ¥390,000)
Keywords液体水素 / 着火 / 極低温流体 / 衝撃波 / 水素 / 火災 / シミュレーション工学 / ロケット
Outline of Final Research Achievements

This study aims to elucidate the explosion mechanism (ignition and flame propagation phenomena) of a massive leak of liquid hydrogen and to establish prediction techniques. In particular, three types of basic tests are proposed to clarify the ignition mechanism. In the basic tests, we will focus on the bubble contraction mechanism and conduct ignition tests by simulating the phase change caused by temperature difference and compression by shock waves. This enables the estimation of the ignition mechanism to be verified in the basic tests, which has only been studied on a theoretical basis in past research. This will make it possible to identify important physical phenomena, predict the explosion power of a liquid hydrogen leak, and study storage and transportation methods to reduce the power.

Academic Significance and Societal Importance of the Research Achievements

3種類の基礎試験を通して,最終的に着火を確認することはできなかったが,各物理現象に要する時間,着火に必要な条件,重要物理現象を識別することができた.これらは安全工学上学術的に価値があるだけでなく,今後実施する大規模実験を安全,確実に実行する上で非常に重要である.また,本研究で解明する爆発メカニズムは,液体水素が液体酸素へ吹き込まれる状況だけではなく,液体水素が海水など別の液体に吹き込まれ,且つ予混合ガスが存在する状況にも共通して起きうることがわかった.つまり,液体水素の大量漏洩が生じうる状況の爆発安全評価にも資することができる.

Report

(6 results)
  • 2021 Annual Research Report   Final Research Report ( PDF )
  • 2020 Research-status Report
  • 2019 Research-status Report
  • 2018 Research-status Report
  • 2017 Research-status Report
  • Research Products

    (3 results)

All 2021 2020

All Journal Article (1 results) (of which Peer Reviewed: 1 results) Presentation (2 results)

  • [Journal Article] Experimental study on cryo-compressed hydrogen ignition and flame2020

    • Author(s)
      Hiroaki Kobayashi, Daiki Muto, Yu Daimon, Yutaka Umemura, Yuichiro Takesaki, Yusuke Maru, Tsuyoshi Yagishita, Satoshi Nonaka, Kota Miyanabe
    • Journal Title

      International Journal of Hydrogen Energy

      Volume: 45 Issue: 7 Pages: 5098-5109

    • DOI

      10.1016/j.ijhydene.2019.12.091

    • Related Report
      2019 Research-status Report
    • Peer Reviewed
  • [Presentation] 気泡崩壊が誘発する水素着火現象に関する検討2021

    • Author(s)
      坂本勇樹,小林弘明,大門優
    • Organizer
      日本機械学会第99期流体工学部門講演会
    • Related Report
      2021 Annual Research Report
  • [Presentation] 気泡崩壊現象による水素着火の可能性に関する検討2020

    • Author(s)
      小林弘明,大門優,藤本圭一郎,谷洋海,丸祐介,竹崎悠一郎
    • Organizer
      2019年度機械学会年次大会
    • Related Report
      2020 Research-status Report

URL: 

Published: 2017-04-28   Modified: 2023-01-30  

Information User Guide FAQ News Terms of Use Attribution of KAKENHI

Powered by NII kakenhi