• Search Research Projects
  • Search Researchers
  • How to Use
  1. Back to previous page

Arithmetic of division polynomials and orthogonal polynomials

Research Project

Project/Area Number 17K05168
Research Category

Grant-in-Aid for Scientific Research (C)

Allocation TypeMulti-year Fund
Section一般
Research Field Algebra
Research InstitutionNagoya Institute of Technology

Principal Investigator

Yamagishi Masakazu  名古屋工業大学, 工学(系)研究科(研究院), 教授 (40270996)

Co-Investigator(Kenkyū-buntansha) 水澤 靖  名古屋工業大学, 工学(系)研究科(研究院), 教授 (60453817)
Project Period (FY) 2017-04-01 – 2021-03-31
Project Status Completed (Fiscal Year 2020)
Budget Amount *help
¥2,340,000 (Direct Cost: ¥1,800,000、Indirect Cost: ¥540,000)
Fiscal Year 2019: ¥650,000 (Direct Cost: ¥500,000、Indirect Cost: ¥150,000)
Fiscal Year 2018: ¥650,000 (Direct Cost: ¥500,000、Indirect Cost: ¥150,000)
Fiscal Year 2017: ¥1,040,000 (Direct Cost: ¥800,000、Indirect Cost: ¥240,000)
Keywords等分多項式 / チェビシェフ多項式 / ヤコビ楕円関数 / 終結式と判別式 / 線形符号 / 重み多項式 / 形式群 / リュカ数列 / ディクソン多項式 / 終結式 / 判別式 / 楕円関数 / 直交多項式
Outline of Final Research Achievements

Division polynomials are important subjects in algebraic number theory. On the other hand, orthogonal polynomials often appear in graph theory and in combinatorics; in particular, Chebyshev polynomials have wide-ranging applications. By regarding Chebyshev polynomials as division polynomials, we are able to investigate their properties by arithmetic methods and to apply Chebyshev polynomials to various mathematical problems. In this study, we applied this point of view to other kinds of division polynomials. The main results are the determination of resultants of division polynomials of Jacobi elliptic funcions, and an application of division polynomials of formal groups. Also, as initially unexpected results, we gave answers to some problems in coding theory by using Chebyshev polynomials.

Academic Significance and Societal Importance of the Research Achievements

各種多項式系列の終結式は古くから計算され、代数的整数論を始め各分野で応用されている。最近では数論力学系に関連して、ワイエルシュトラス楕円関数の等分多項式の終結式が計算された(Harry Schmidt, 2015)。その系列にヤコビ楕円関数の等分多項式を加えることができたことは学術的に意義があるといえる。虚2次体の整数環の単生性への応用が期待できる。符号理論に関する本研究の成果は理論的なものであり、実在の線形符号に直接関わるものではないが、将来的には符号のゼータ関数について新しい知見を与えることが期待される。

Report

(5 results)
  • 2020 Annual Research Report   Final Research Report ( PDF )
  • 2019 Research-status Report
  • 2018 Research-status Report
  • 2017 Research-status Report
  • Research Products

    (8 results)

All 2021 2020 2019 2018 2017

All Journal Article (5 results) (of which Peer Reviewed: 5 results,  Open Access: 1 results) Presentation (3 results) (of which Invited: 1 results)

  • [Journal Article] On 2-adic Lie Iterated Extensions of Number Fields Arising from a Joukowski Map2021

    • Author(s)
      Yasushi Mizusawa, Kota Yamamoto
    • Journal Title

      Tokyo Journal of Mathematics

      Volume: - Issue: -1

    • DOI

      10.3836/tjm/1502179321

    • Related Report
      2020 Annual Research Report
    • Peer Reviewed
  • [Journal Article] Formal weight enumerators and Chebyshev polynomials2020

    • Author(s)
      Yamagishi Masakazu
    • Journal Title

      Applicable Algebra in Engineering, Communication and Computing

      Volume: - Issue: 5 Pages: 551-568

    • DOI

      10.1007/s00200-020-00469-1

    • Related Report
      2020 Annual Research Report
    • Peer Reviewed
  • [Journal Article] On weight-one solvable configurations of the Lights Out puzzle2019

    • Author(s)
      Hayata Yuki、Yamagishi Masakazu
    • Journal Title

      Involve, a Journal of Mathematics

      Volume: 12 Issue: 4 Pages: 713-720

    • DOI

      10.2140/involve.2019.12.713

    • Related Report
      2019 Research-status Report 2018 Research-status Report
    • Peer Reviewed
  • [Journal Article] A Short Proof of Congruences for Lucas Sequences2019

    • Author(s)
      Masakazu Yamagishi
    • Journal Title

      The Fibonacci Quarterly

      Volume: 57 Pages: 260-264

    • Related Report
      2019 Research-status Report
    • Peer Reviewed
  • [Journal Article] Resultants and discriminants of the multiplication polynomials of Jacobi elliptic functions2018

    • Author(s)
      Yamagata Koji、Yamagishi Masakazu
    • Journal Title

      Journal of Number Theory

      Volume: 186 Pages: 147-161

    • DOI

      10.1016/j.jnt.2017.09.023

    • Related Report
      2017 Research-status Report
    • Peer Reviewed / Open Access
  • [Presentation] 有理形式群について2021

    • Author(s)
      山岸正和
    • Organizer
      日本数学会年会
    • Related Report
      2020 Annual Research Report
  • [Presentation] Formal weight enumerator とチェビシェフ多項式2021

    • Author(s)
      山岸正和
    • Organizer
      日本数学会年会
    • Related Report
      2020 Annual Research Report
  • [Presentation] 等分多項式の終結式と判別式について2017

    • Author(s)
      山縣幸司, 山岸正和
    • Organizer
      代数的整数論研究集会
    • Related Report
      2017 Research-status Report
    • Invited

URL: 

Published: 2017-04-28   Modified: 2022-01-27  

Information User Guide FAQ News Terms of Use Attribution of KAKENHI

Powered by NII kakenhi