• Search Research Projects
  • Search Researchers
  • How to Use
  1. Back to previous page

Applications of class field theory for curves over local fields

Research Project

Project/Area Number 17K05174
Research Category

Grant-in-Aid for Scientific Research (C)

Allocation TypeMulti-year Fund
Section一般
Research Field Algebra
Research InstitutionKyushu Institute of Technology

Principal Investigator

Hiranouchi Toshiro  九州工業大学, 大学院工学研究院, 准教授 (30532551)

Project Period (FY) 2017-04-01 – 2020-03-31
Project Status Completed (Fiscal Year 2019)
Budget Amount *help
¥3,640,000 (Direct Cost: ¥2,800,000、Indirect Cost: ¥840,000)
Fiscal Year 2019: ¥650,000 (Direct Cost: ¥500,000、Indirect Cost: ¥150,000)
Fiscal Year 2018: ¥1,690,000 (Direct Cost: ¥1,300,000、Indirect Cost: ¥390,000)
Fiscal Year 2017: ¥1,300,000 (Direct Cost: ¥1,000,000、Indirect Cost: ¥300,000)
Keywords類体論 / 楕円曲線 / 類数 / 類群 / 数論幾何学
Outline of Final Research Achievements

The results in this project are mainly the following four: 1. First, I completed the class theory on open curves over local fields (which may has positive characteristic). 2. The lower bound of the class number associated with an elliptic curve over a number field is given by the rank of the Mordell-Weil group of the elliptic curve. 3. For a curve over a p-adic field, when the associated Jacobian variety has a good ordinary reduction, we obtain an explicit computation of the "class group" of the curve. 4. We discussed conditions under which the Somekawa K-group associated with two elliptic curves on a p-adic field becomes p-divisible.

Academic Significance and Societal Importance of the Research Achievements

局所体上の曲線に対する類体論そのものは1980年代に完成していたが、付随する「類群」の計算についての結果はこれまでそれほど多くはなかった。今回の研究成果により、こうした「類群」を幾つかの場合は具体的に計算することが分かった。将来的な発展の余地も大きいと思われる。

Report

(4 results)
  • 2019 Annual Research Report   Final Research Report ( PDF )
  • 2018 Research-status Report
  • 2017 Research-status Report
  • Research Products

    (11 results)

All 2019 2018 2017 Other

All Int'l Joint Research (1 results) Journal Article (5 results) (of which Peer Reviewed: 4 results,  Open Access: 1 results) Presentation (5 results) (of which Invited: 1 results)

  • [Int'l Joint Research] University of Virginia(米国)

    • Related Report
      2019 Annual Research Report
  • [Journal Article] A VANISHING THEOREM OF ADDITIVE HIGHER CHOW GROUPS2019

    • Author(s)
      Toshiro Hiranouchi
    • Journal Title

      Scientiae Mathematicae Japonicae

      Volume: 81 Issue: 3 Pages: 247-256

    • DOI

      10.32219/isms.81.3_247

    • NAID

      130007644564

    • ISSN
      1346-0447
    • Related Report
      2019 Annual Research Report
    • Peer Reviewed / Open Access
  • [Journal Article] al torsion primes and the class numbers associated to an elliptic curve over Q2019

    • Author(s)
      Toshiro Hiranouchi
    • Journal Title

      Hiroshima Math. J

      Volume: 49 Issue: 1 Pages: 117-128

    • DOI

      10.32917/hmj/1554516039

    • Related Report
      2019 Annual Research Report
  • [Journal Article] Local torsion primes and the class numbers associated to an elliptic curve over Q2019

    • Author(s)
      Toshiro Hiranouchi
    • Journal Title

      Hiroshima Math. J.

      Volume: 49 Pages: 117-128

    • Related Report
      2018 Research-status Report
    • Peer Reviewed
  • [Journal Article] A vanishing theorem of the additive higher Chow groups2019

    • Author(s)
      Toshiro Hiranouchi
    • Journal Title

      Sci. Math. Jpn.

      Volume: 81 Pages: 247-256

    • NAID

      130007644564

    • Related Report
      2018 Research-status Report
    • Peer Reviewed
  • [Journal Article] Class field theory for open curves over local fields2018

    • Author(s)
      Toshiro Hiranouchi
    • Journal Title

      J. de theorie des nombres de Bordeaux

      Volume: 印刷中

    • Related Report
      2017 Research-status Report
    • Peer Reviewed
  • [Presentation] Galois symbol maps for abelian varieties over a p-adic field2019

    • Author(s)
      平之内俊郎
    • Organizer
      日本数学会九州支部例会
    • Related Report
      2019 Annual Research Report
  • [Presentation] 局所体上の楕円曲線の「類数」について2019

    • Author(s)
      平之内俊郎
    • Organizer
      大分鹿児島整数論
    • Related Report
      2018 Research-status Report
  • [Presentation] 局所体上の関数体に対する類体論2017

    • Author(s)
      平之内俊郎
    • Organizer
      日本数学会九州支部例会
    • Related Report
      2017 Research-status Report
    • Invited
  • [Presentation] Class field theory for curves over local fields2017

    • Author(s)
      平之内俊郎
    • Organizer
      Galois representations, ramification theory, and related topics
    • Related Report
      2017 Research-status Report
  • [Presentation] 局所捻れ素数と楕円曲線に付随する類数2017

    • Author(s)
      平之内俊郎
    • Organizer
      九州代数的整数論2018
    • Related Report
      2017 Research-status Report

URL: 

Published: 2017-04-28   Modified: 2021-02-19  

Information User Guide FAQ News Terms of Use Attribution of KAKENHI

Powered by NII kakenhi