• Search Research Projects
  • Search Researchers
  • How to Use
  1. Back to previous page

Multiple and weighted averaging of zeta and theta functions--their formulations and asymptotics--

Research Project

Project/Area Number 17K05182
Research Category

Grant-in-Aid for Scientific Research (C)

Allocation TypeMulti-year Fund
Section一般
Research Field Algebra
Research InstitutionKeio University

Principal Investigator

Katsurada Masanori  慶應義塾大学, 経済学部(日吉), 教授 (90224485)

Project Period (FY) 2017-04-01 – 2022-03-31
Project Status Completed (Fiscal Year 2021)
Budget Amount *help
¥4,420,000 (Direct Cost: ¥3,400,000、Indirect Cost: ¥1,020,000)
Fiscal Year 2019: ¥1,820,000 (Direct Cost: ¥1,400,000、Indirect Cost: ¥420,000)
Fiscal Year 2018: ¥1,300,000 (Direct Cost: ¥1,000,000、Indirect Cost: ¥300,000)
Fiscal Year 2017: ¥1,300,000 (Direct Cost: ¥1,000,000、Indirect Cost: ¥300,000)
Keywordszeta-function / theta function / asymptotic expansion / mean value / ゼータ関数 / テータ関数 / 加重・多重平均化 / 漸近展開 / 積分変換
Outline of Final Research Achievements

i) Averaging of the values of Lerch zeta-functions: The head investigator has shown that complete asymptotic expansions exist for the Laplace-Mellin and Riemann-Liouville transforms, together with their appropriate iterations, of Lerch zeta-functions in terms of their pivotal variable $s$ of the transforms, when $s\to0$ and $s\to\infty$ both through the sector $|\arg s|<\pi$. The region of validity of these asymptotic expansions contain any vertical ray through imaginary directions; this allows us in general fairly nice applicability to the problems of analytic number theory;
ii) Asymptotic expansions associated with Dirichlet-Hurwitz-Lerch holomorphic Eisenstein series: The head investigator, jointed with (his collaborator) Professor Takumi Noda, have established complete asymptotic expansions exist for Dirichlet-Hurwitz-Lerch holomorphic Eisenstein series when the associated parameter $z$ of the series tends to $0$ and $\infty$ both through the complex upper half-plane $0<\arg z<\pi$.

Academic Significance and Societal Importance of the Research Achievements

i) Lerch ゼータ関数の平均化:ゼータ関数に対する種々の積分変換を考察する研究は,これまでは Laplace 変換や Mellin 変換に関するものが主流であったが,今回,本研究で得られた成果から,新たに Laplace-Mellin 型, Riemann-Liouville 型や,それらの適切な iterations(s) 等の新たなクラスに対しても意義ある結果を導出できることが判明した;
ii) Dirichlet-Hurwitz-Lerch 正則 Eisenstein 級数に付随する漸近展開:表記の漸近展開から,Ramanujan による著名な公式等を含む極めて広範な応用も得られる.

Report

(6 results)
  • 2021 Annual Research Report   Final Research Report ( PDF )
  • 2020 Research-status Report
  • 2019 Research-status Report
  • 2018 Research-status Report
  • 2017 Research-status Report
  • Research Products

    (20 results)

All 2021 2020 2019 2018 2017

All Journal Article (13 results) (of which Int'l Joint Research: 1 results,  Open Access: 13 results,  Peer Reviewed: 4 results) Presentation (6 results) (of which Int'l Joint Research: 6 results,  Invited: 2 results) Funded Workshop (1 results)

  • [Journal Article] Complete asymptotic expansions for the transformed Lerch zeta-functions via the Laplace-Mellin and Riemann-Liouville operators2021

    • Author(s)
      Masanori Katsurada
    • Journal Title

      ``Kokyuroku," R.I.M.S.

      Volume: No. 2203

    • Related Report
      2021 Annual Research Report
    • Open Access
  • [Journal Article] Asymptotic expansions for the multiple Laplace-Mellin transform of Lerch zeta-functions and applications2021

    • Author(s)
      Masanori Katsurada
    • Journal Title

      ``Kokyuoku," R.I.M.S.

      Volume: No. 2196

    • NAID

      120007165849

    • Related Report
      2021 Annual Research Report
    • Open Access
  • [Journal Article] Asymptotic expansions associated with various zeta-functions2020

    • Author(s)
      KATSURADA, Masanori
    • Journal Title

      Advanced Studies in Pure Mathematics

      Volume: 84 Pages: 205-262

    • DOI

      10.2969/aspm/08410205

    • Related Report
      2020 Research-status Report
    • Peer Reviewed / Open Access
  • [Journal Article] Transformation formulae and asymptotic expansions for double non-holomorphic Eisenstein series of two complex variables2020

    • Author(s)
      KATSURADA, Masanori; NODA, Takumi
    • Journal Title

      "Kokyuroku," Research Institute for Mathematical Sciences, Kyoto University

      Volume: 2162

    • Related Report
      2020 Research-status Report
    • Open Access
  • [Journal Article] Complete asymptotic expansions associated with various zeta-functions2020

    • Author(s)
      Masanori Katsurada
    • Journal Title

      Advanced Studies in Pure Mathematics 84, 2020: Various aspects of Multiple Zeta Functions

      Volume: 84

    • Related Report
      2019 Research-status Report
    • Peer Reviewed / Open Access
  • [Journal Article] Transformation formulae and asymptotic expansions for double non-holomrphic Eisenstein series of two complex variables (summarized verion)2020

    • Author(s)
      Masanori Katsurada and Takumi Noda
    • Journal Title

      in "K{\^o}ky{\^u}roku," R.I.M.S.

      Volume: --

    • Related Report
      2019 Research-status Report
    • Open Access
  • [Journal Article] Asymptotics for higher derivatives of the Lerch zeta-function: applications to the formulae of Kummer, Lerch and Gauss2019

    • Author(s)
      Masanori Katsurada
    • Journal Title

      in "K{\^o}ky{\^u}roku," R.I.M.S.

      Volume: No. 2031

    • NAID

      120006888072

    • Related Report
      2019 Research-status Report
    • Open Access
  • [Journal Article] Asymptotic expansions associated with higher derivatives of the Lerch zeta-function: applications to the formulae of Kummer, Lerch and Gau{\ss}2019

    • Author(s)
      Masanori KATSURADA
    • Journal Title

      R.I.M.S. K{\^o}ky{\^u}roku

      Volume: ―

    • Related Report
      2018 Research-status Report
    • Open Access
  • [Journal Article] Complete asymptotic expansions associated with various zeta-functions2019

    • Author(s)
      Masanori KATSURADA
    • Journal Title

      Proceedings of the Conference "Various Aspects of Multiple Zeta Functions"

      Volume: ―

    • Related Report
      2018 Research-status Report
    • Peer Reviewed / Open Access
  • [Journal Article] Asymptotic expansions for a class of generalized holomorphic Eisenstein series: applications to Weierstrass' elliptic function and Ramanujan's formula for $\zeta(2k+1)$2018

    • Author(s)
      Masanori KATSURADA and Takumi NODA
    • Journal Title

      R.I.M.S. K{\^o}ky{\^u}roku

      Volume: No. 2092

    • Related Report
      2018 Research-status Report
    • Open Access
  • [Journal Article] Complete asymptotic expansions for the transformed Lerch zeta-functions via the Laplace-Mellin and Riemann-Liouville operators (pre-annoucement)2018

    • Author(s)
      Masanori Katsurada
    • Journal Title

      in ``K{\^o}ky{\^u}roku," R.I.M.S.

      Volume: 印刷中

    • Related Report
      2017 Research-status Report
    • Open Access
  • [Journal Article] Asymptotic expansions for a class of generalized holomorphic Eisenstein series: applications to Ramanujan's formula for $\ze(2k+1)$ and Weierstra{\ss}' elliptic function2018

    • Author(s)
      Masanori Katsurada and Takumi Noda
    • Journal Title

      in ``K{\^o}ky{\^u}roku," R.I.M.S.

      Volume: 印刷中

    • Related Report
      2017 Research-status Report
    • Open Access
  • [Journal Article] Transformation formulae and asymptotic expansions for double holomorphic Eisenstein series of two complex variables2017

    • Author(s)
      M. Katsurada and T. Noda
    • Journal Title

      the Ramanujan Journal

      Volume: 44 Issue: 2 Pages: 237280-237280

    • DOI

      10.1007/s11139-017-9922-5

    • Related Report
      2017 Research-status Report
    • Peer Reviewed / Open Access / Int'l Joint Research
  • [Presentation] Asymptotic expansions for the multiple Laplace-Mellin transforms and applications2020

    • Author(s)
      KATSURADA, Masanori
    • Organizer
      RIMS Workshop 2020 "Problems and Prospects in Analytic Number Theory"
    • Related Report
      2020 Research-status Report
    • Int'l Joint Research
  • [Presentation] Asymptotic expansions associated with a non-holomorphic Eisenstein series of two complex variables2019

    • Author(s)
      Masanori Katsurada
    • Organizer
      "Analytic Number Theory and Related Topics" at R.I.M.S., Kyoto University
    • Related Report
      2019 Research-status Report
    • Int'l Joint Research
  • [Presentation] Asymptotic expansions for higher derivatives of the Lerch zeta-function2018

    • Author(s)
      Masanori KATSURADA
    • Organizer
      Analytic Number Theory and Related Topics, R.I.M.S., Kyoto University
    • Related Report
      2018 Research-status Report
    • Int'l Joint Research
  • [Presentation] Asymptotic expansions for a class of generalized holomorphic Eisenstein series: applications to Ramanujan's formula for $\zeta(2k+1)$, Weierstrass' elliptic and allied functions2018

    • Author(s)
      Masanori KATSURADA
    • Organizer
      大分鹿児島整数論研究集会
    • Related Report
      2018 Research-status Report
    • Int'l Joint Research / Invited
  • [Presentation] Asymptotic expansions for various zeta-functions: a survey2017

    • Author(s)
      Masanori Katsurada
    • Organizer
      ``Various Aspects of Multiple Zeta Functions"
    • Related Report
      2017 Research-status Report
    • Int'l Joint Research / Invited
  • [Presentation] Asymptotic expansions for a class of generalized holomorphic Eisenstein series: applications to Weierstra{\ss}' elliptic function and Ramanujan's formula for $\zeta(2k+1)$2017

    • Author(s)
      Masanori Katsurada
    • Organizer
      Analytic Number Theory and Related Areas
    • Related Report
      2017 Research-status Report
    • Int'l Joint Research
  • [Funded Workshop] Diophantine Analysis and Related Fields 20182018

    • Related Report
      2017 Research-status Report

URL: 

Published: 2017-04-28   Modified: 2023-01-30  

Information User Guide FAQ News Terms of Use Attribution of KAKENHI

Powered by NII kakenhi