• Search Research Projects
  • Search Researchers
  • How to Use
  1. Back to previous page

Quandles in algebraic and arithmetic geometry

Research Project

Project/Area Number 17K05204
Research Category

Grant-in-Aid for Scientific Research (C)

Allocation TypeMulti-year Fund
Section一般
Research Field Algebra
Research InstitutionHiroshima University

Principal Investigator

Takahashi Nobuyoshi  広島大学, 先進理工系科学研究科(理), 准教授 (60301298)

Project Period (FY) 2017-04-01 – 2022-03-31
Project Status Completed (Fiscal Year 2021)
Budget Amount *help
¥4,420,000 (Direct Cost: ¥3,400,000、Indirect Cost: ¥1,020,000)
Fiscal Year 2020: ¥1,040,000 (Direct Cost: ¥800,000、Indirect Cost: ¥240,000)
Fiscal Year 2019: ¥1,040,000 (Direct Cost: ¥800,000、Indirect Cost: ¥240,000)
Fiscal Year 2018: ¥1,040,000 (Direct Cost: ¥800,000、Indirect Cost: ¥240,000)
Fiscal Year 2017: ¥1,300,000 (Direct Cost: ¥1,000,000、Indirect Cost: ¥300,000)
Keywords代数多様体 / カンドル / Lie-Yamaguti代数 / 代数的整数環 / 対数的幾何学 / Gromov-Witten 不変量 / 代数的整数論 / Lie山口代数 / 代数学 / 代数幾何 / 数論幾何
Outline of Final Research Achievements

1. I defined the notion of a module over a manifold endowed with the structure of a quandle (quandle manifold), and provided various examples. Then, in the case the quandle manifold is a ``regular s-manifold'', I defined regular modules, and showed that they correspond to regular representations of a certain algebra, called an infinitesimal s-manifold. Furthermore, I arrived at an outlook on how they relate to representations of the relevant Lie algebra.
2. I obtained results on how to associate a quandle or a multiple conjugation quandle to an integer ring, and how the integer ring can be reconstructed.
3. I studied logarithmic BPS invariants and logarithmic Gromov-Witten invariants; how they are related to local BPS invariants; a conjecture that they are independent of the point of contact; the contribution of a degenerate curve.

Academic Significance and Societal Importance of the Research Achievements

1. カンドルという代数系は、簡潔な公理により定義され、結び目理論などに応用を持つ興味深いものである。群の構造を持つ多様体であるLie群と同様、カンドル多様体にも奥深い理論があることが期待される。代数的構造の研究に特に有用であるのがその上の加群であり、今回の成果はその基礎をなすものと言える。
2. 整数環に付随するカンドルの研究は、整数環と三次元多様体の類似に新しい視点を付け加えるものと思われる。
3. 対数的BPS不変量の研究は、対数的退化を用いてミラー対称性を研究するGross-Siebert programなどにも応用が見込まれる。

Report

(6 results)
  • 2021 Annual Research Report   Final Research Report ( PDF )
  • 2020 Research-status Report
  • 2019 Research-status Report
  • 2018 Research-status Report
  • 2017 Research-status Report
  • Research Products

    (21 results)

All 2021 2020 2019 2018 Other

All Int'l Joint Research (12 results) Journal Article (5 results) (of which Int'l Joint Research: 3 results,  Peer Reviewed: 5 results,  Open Access: 4 results) Presentation (4 results) (of which Int'l Joint Research: 3 results,  Invited: 4 results)

  • [Int'l Joint Research] Sookmyung Women's University(韓国)

    • Related Report
      2021 Annual Research Report
  • [Int'l Joint Research] University of Birmingham(英国)

    • Related Report
      2021 Annual Research Report
  • [Int'l Joint Research] Univ. of Illinois at Urbana-Champaign(米国)

    • Related Report
      2021 Annual Research Report
  • [Int'l Joint Research] Sookmyung Women's University(韓国)

    • Related Report
      2020 Research-status Report
  • [Int'l Joint Research] The University of Warwick(英国)

    • Related Report
      2020 Research-status Report
  • [Int'l Joint Research] Univ. of Illinois at Urbana-Champaign(米国)

    • Related Report
      2020 Research-status Report
  • [Int'l Joint Research] Sookmyung Women's University(韓国)

    • Related Report
      2019 Research-status Report
  • [Int'l Joint Research] The University of Warwick(英国)

    • Related Report
      2019 Research-status Report
  • [Int'l Joint Research] Univ. of Illinois at Urbana-Champaign(米国)

    • Related Report
      2019 Research-status Report
  • [Int'l Joint Research] Sookmyung Women's University(韓国)

    • Related Report
      2018 Research-status Report
  • [Int'l Joint Research] The University of Warwick(英国)

    • Related Report
      2018 Research-status Report
  • [Int'l Joint Research] Univ. of Illinois at Urbana-Champaign(米国)

    • Related Report
      2018 Research-status Report
  • [Journal Article] Sheaves of maximal intersection and multiplicities of stable log maps2021

    • Author(s)
      Choi Jinwon、van Garrel Michel、Katz Sheldon、Takahashi Nobuyoshi
    • Journal Title

      Selecta Mathematica

      Volume: 27 Issue: 4

    • DOI

      10.1007/s00029-021-00671-0

    • Related Report
      2021 Annual Research Report
    • Peer Reviewed / Open Access / Int'l Joint Research
  • [Journal Article] Log BPS numbers of log Calabi-Yau surfaces2021

    • Author(s)
      Jinwon Choi, Michel van Garrel, Sheldon Katz, Nobuyoshi Takahashi
    • Journal Title

      Transactions of the American Mathematical Society

      Volume: 374 Issue: 1 Pages: 687-732

    • DOI

      10.1090/tran/8234

    • Related Report
      2020 Research-status Report
    • Peer Reviewed / Open Access / Int'l Joint Research
  • [Journal Article] Modules over geometric quandles and representations of Lie-Yamaguti algebras2021

    • Author(s)
      Nobuyoshi Takahashi
    • Journal Title

      Journal of Lie Theory

      Volume: -

    • Related Report
      2020 Research-status Report
    • Peer Reviewed
  • [Journal Article] QUANDLES ASSOCIATED TO GALOIS COVERS OF ARITHMETIC SCHEMES2019

    • Author(s)
      Nobuyoshi Takahashi
    • Journal Title

      Kyushu Journal of Mathematics

      Volume: 73 Issue: 1 Pages: 145-164

    • DOI

      10.2206/kyushujm.73.145

    • NAID

      130007728835

    • ISSN
      1340-6116, 1883-2032
    • Related Report
      2018 Research-status Report
    • Peer Reviewed / Open Access
  • [Journal Article] Local BPS Invariants: Enumerative Aspects and Wall-Crossing2019

    • Author(s)
      Choi Jinwon、van Garrel Michel、Katz Sheldon、Takahashi Nobuyoshi
    • Journal Title

      International Mathematics Research Notices

      Volume: to appear Issue: 17 Pages: 5450-5475

    • DOI

      10.1093/imrn/rny171

    • Related Report
      2018 Research-status Report
    • Peer Reviewed / Open Access / Int'l Joint Research
  • [Presentation] Log BPS numbers and contributions of degenerate log maps2021

    • Author(s)
      Nobuyoshi Takahashi
    • Organizer
      Online workshop on mirror symmetry and related topics, Kyoto 2021
    • Related Report
      2021 Annual Research Report
    • Int'l Joint Research / Invited
  • [Presentation] カンドル空間上の加群と Lie-山口代数の表現2020

    • Author(s)
      高橋 宣能
    • Organizer
      研究集会「カンドルと対称空間」
    • Related Report
      2020 Research-status Report
    • Invited
  • [Presentation] Modules on quandle spaces and representations of LY algebras2019

    • Author(s)
      Nobuyoshi Takahashi
    • Organizer
      Branched Coverings, Degenerations, and Related Topics 2019
    • Related Report
      2018 Research-status Report
    • Int'l Joint Research / Invited
  • [Presentation] Modules on quandle varieties2018

    • Author(s)
      高橋 宣能
    • Organizer
      Higher dimensional algebraic geometry
    • Related Report
      2017 Research-status Report
    • Int'l Joint Research / Invited

URL: 

Published: 2017-04-28   Modified: 2023-01-30  

Information User Guide FAQ News Terms of Use Attribution of KAKENHI

Powered by NII kakenhi