• Search Research Projects
  • Search Researchers
  • How to Use
  1. Back to previous page

Elliptic surfaces and the topology of plane curves

Research Project

Project/Area Number 17K05205
Research Category

Grant-in-Aid for Scientific Research (C)

Allocation TypeMulti-year Fund
Section一般
Research Field Algebra
Research InstitutionTokyo Metropolitan University

Principal Investigator

Tokunaga Hiroo  東京都立大学, 理学研究科, 教授 (30211395)

Project Period (FY) 2017-04-01 – 2022-03-31
Project Status Completed (Fiscal Year 2021)
Budget Amount *help
¥4,420,000 (Direct Cost: ¥3,400,000、Indirect Cost: ¥1,020,000)
Fiscal Year 2019: ¥1,040,000 (Direct Cost: ¥800,000、Indirect Cost: ¥240,000)
Fiscal Year 2018: ¥1,950,000 (Direct Cost: ¥1,500,000、Indirect Cost: ¥450,000)
Fiscal Year 2017: ¥1,430,000 (Direct Cost: ¥1,100,000、Indirect Cost: ¥330,000)
Keywords楕円曲面 / 多重切断 / Zariski pair / Mordell-Weil群 / Zariski N-ple / 楕円曲線 / 埋め込み位相 / Zariski対 / Abel-Jacobi写像 / Mordell-Weil格子 / Mumford表現 / モデュラー曲線 / Zariski N 組 / 連結数 / 分解数 / ザリスキ対 / quasi torus分解 / 曲線配置 / 曲線配置のトポロジー
Outline of Final Research Achievements

An elliptic surface S over the projective line has two aspects: the Kodaira Neron model of an elliptic curve E over the field of rational functions of one variable and a double cover of a certain rational surface. We start the first aspect: we translate some arithmetic properties of rational points and divisors on E into geometric ones on S. The we go onto the second: we use the double cover to construct curves on rational surfaces and to study the topology of such curves. As applications, we construct various Zariski pairs. Moreover, we find the Mumford representations of divisors on E, which are useful in explicit treatment of curves, has more possibility to further applications.

Academic Significance and Societal Importance of the Research Achievements

楕円曲面は代数幾何学,特に代数曲面の研究,においては重要な位置を占めている対象である.小平邦彦による楕円曲面の研究以来,その研究手法も含めて多くの研究者が扱ってきた.楕円曲面には,「幾何学研究」としての対象という側面と,函数体上の楕円曲線という「数論的研究」としての対象という側面がある.本研究においてはまず,数論的側面から研究を行い,それを平面代数曲線のトポロジーという幾何学への応用を目指した.これまでは,多くの研究者が「幾何学的性質の研究成果を数論的研究へ応用」という流れで研究を行ってきたが,本課題では,応用数学分野の手法を取り入れ「逆」の流れで研究を進め成果を上げている点に意義がある.

Report

(6 results)
  • 2021 Annual Research Report   Final Research Report ( PDF )
  • 2020 Research-status Report
  • 2019 Research-status Report
  • 2018 Research-status Report
  • 2017 Research-status Report
  • Research Products

    (25 results)

All 2022 2021 2020 2019 2018 2017 Other

All Int'l Joint Research (3 results) Journal Article (8 results) (of which Int'l Joint Research: 1 results,  Peer Reviewed: 8 results,  Open Access: 3 results) Presentation (13 results) (of which Int'l Joint Research: 8 results,  Invited: 12 results) Funded Workshop (1 results)

  • [Int'l Joint Research] Universidad de Zaragoza(スペイン)

    • Related Report
      2019 Research-status Report
  • [Int'l Joint Research] Universidad de Zaragoza/Universidad Complutense de Madrid(スペイン)

    • Related Report
      2018 Research-status Report
  • [Int'l Joint Research] サラゴサ大学(スペイン)

    • Related Report
      2017 Research-status Report
  • [Journal Article] Trisections on certain rational elliptic surfaces and families of Zariski pairs degenerating to the same conic-line arrangement2022

    • Author(s)
      Bannai S.、Kawana N.、Masuya R.、Tokunaga H.
    • Journal Title

      Geometriae Dedicata

      Volume: 216 Issue: 1

    • DOI

      10.1007/s10711-021-00672-5

    • Related Report
      2021 Annual Research Report
    • Peer Reviewed
  • [Journal Article] Elliptic surfaces of rank one and the topology of cubic-line arrangements2021

    • Author(s)
      S. Bannai and H. Tokunaga
    • Journal Title

      J. Number Theory

      Volume: 221 Pages: 174-189

    • DOI

      10.1016/j.jnt.2020.06.005

    • Related Report
      2020 Research-status Report
    • Peer Reviewed
  • [Journal Article] Rational points of elliptic surfaces and the topology of cubic-line, cubic-conic-line arrangements2020

    • Author(s)
      S. Bannai, H. Tokunaga and M. Yamamoto
    • Journal Title

      Hokkaido Math. J.

      Volume: 49 Issue: 1

    • DOI

      10.14492/hokmj/1591085013

    • Related Report
      2020 Research-status Report
    • Peer Reviewed
  • [Journal Article] Zariski N-ples for a smooth cubic and its tangent lines2020

    • Author(s)
      S. Bannai and H. Tokunaga
    • Journal Title

      Proc. Japan Acad. Ser. A Math. Sci.

      Volume: 96 Issue: 2 Pages: 18-21

    • DOI

      10.3792/pjaa.96.004

    • Related Report
      2019 Research-status Report
    • Peer Reviewed / Open Access
  • [Journal Article] A note on the topology of arrangements for a smooth plane quartic and its bitangent lines2019

    • Author(s)
      S.Bannai, H, Tokunaga and M.Yamamoto
    • Journal Title

      Hiroshima Mathematical Journal

      Volume: 49 Issue: 2

    • DOI

      10.32917/hmj/1564106549

    • Related Report
      2019 Research-status Report
    • Peer Reviewed / Open Access
  • [Journal Article] Elliptic surfaces and contact conics for a 3-nodal quartic2018

    • Author(s)
      Khulan Tumenbayar and Hiro-o Tokunaga
    • Journal Title

      Hokkaido Math. J.

      Volume: 47 Issue: 1 Pages: 223-244

    • DOI

      10.14492/hokmj/1520928068

    • Related Report
      2018 Research-status Report
    • Peer Reviewed
  • [Journal Article] On the topology of arrangements of a cubic and its inflectional tangents2017

    • Author(s)
      S.Bannai, B.Guerville - Balle, T.Shirane and H.Tokunaga
    • Journal Title

      Proc. Japan Acad. Ser. A Math. Sci.

      Volume: 93 Pages: 50-53

    • Related Report
      2017 Research-status Report
    • Peer Reviewed / Open Access / Int'l Joint Research
  • [Journal Article] Geometry of bisections of elliptic surfaces and Zariski $N$-plets II2017

    • Author(s)
      S.Bannai and H.Tokunaga
    • Journal Title

      Topology and its Applications

      Volume: 231 Pages: 10-25

    • DOI

      10.1016/j.topol.2017.09.003

    • Related Report
      2017 Research-status Report
    • Peer Reviewed
  • [Presentation] Multi-sections of elliptic surfaces and families of Zariki pairs2021

    • Author(s)
      H.Tokunaga
    • Organizer
      Arithmetic Algebraic Geometry and mathematical physics at RIMS
    • Related Report
      2021 Annual Research Report
    • Int'l Joint Research / Invited
  • [Presentation] Multi-sections of elliptic surfaces and families of Zariki pairs2021

    • Author(s)
      H. Tokunaga
    • Organizer
      Singularities, arrangements, and low-dim. topology, JSPS-VAST Bilateral Joint Research Project Workshop. On-line
    • Related Report
      2021 Annual Research Report
    • Int'l Joint Research / Invited
  • [Presentation] On the topology of cubic-line, quartic-line arrangement2019

    • Author(s)
      Hiroo Tokunaga
    • Organizer
      Seminar Komplexe Geometrie, Ruhr Universitaet Bochum, Bochum, Germany
    • Related Report
      2019 Research-status Report
    • Invited
  • [Presentation] On the topology of cubic-line arrangements2019

    • Author(s)
      Hiroo Tokunaga
    • Organizer
      Algebraic surfaces and related topics, 高知工科大学,永国寺キャンパス
    • Related Report
      2019 Research-status Report
    • Int'l Joint Research / Invited
  • [Presentation] On m-contact curves to a cubic: Mumford representations and divisions2019

    • Author(s)
      Hiroo Tokunaga
    • Organizer
      代数幾何セミナー, 高知工科大学, 永国寺キャンパス
    • Related Report
      2019 Research-status Report
  • [Presentation] Construction of n-contact curve to a cubic and Zariski tuple2019

    • Author(s)
      Hiroo Tokunaga
    • Organizer
      Geometries in Pyrenees, Unviersite de Pau et des Pays de l'Aour
    • Related Report
      2019 Research-status Report
    • Int'l Joint Research / Invited
  • [Presentation] 2次被覆のarithmetic と平面代数曲線のトポロジー2018

    • Author(s)
      徳永浩雄
    • Organizer
      代数学シンポジウム
    • Related Report
      2018 Research-status Report
    • Invited
  • [Presentation] The topology of plane curves and arithmetic of P2,2018

    • Author(s)
      徳永浩雄
    • Organizer
      15th International Conference Zaragoza-Pau on Mathematics and its Applications
    • Related Report
      2018 Research-status Report
    • Int'l Joint Research / Invited
  • [Presentation] On the topology of plane curves and arithmetic of P22018

    • Author(s)
      徳永浩雄
    • Organizer
      Seminario de Algebra, Geometria y Topologia
    • Related Report
      2018 Research-status Report
    • Int'l Joint Research / Invited
  • [Presentation] A remark on certain cubic-line arrangements and elliptic surfaces2018

    • Author(s)
      徳永浩雄
    • Organizer
      On hyperplane arrangements, configuration spaces and related topics
    • Related Report
      2018 Research-status Report
    • Int'l Joint Research / Invited
  • [Presentation] Arithmetic of double covers of P^2 -the opology of reducible plane curves-2018

    • Author(s)
      徳永浩雄
    • Organizer
      A walk between hyperplane arrangements, computer algebra and algorithms, 北海道大学
    • Related Report
      2017 Research-status Report
    • Int'l Joint Research / Invited
  • [Presentation] Rational points of elliptic surfaces and cubic-line arrangements2017

    • Author(s)
      徳永浩雄
    • Organizer
      Seimiario Geometria y Topologia, Universidad de Zaraggoza
    • Related Report
      2017 Research-status Report
    • Invited
  • [Presentation] 楕円曲面の有理点とcubic-line arrangements2017

    • Author(s)
      徳永浩雄
    • Organizer
      射影多様体の幾何とその周辺,高知大学
    • Related Report
      2017 Research-status Report
    • Invited
  • [Funded Workshop] Branched coverings, degenerations and related topics2018

    • Related Report
      2018 Research-status Report

URL: 

Published: 2017-04-28   Modified: 2023-01-30  

Information User Guide FAQ News Terms of Use Attribution of KAKENHI

Powered by NII kakenhi