• Search Research Projects
  • Search Researchers
  • How to Use
  1. Back to previous page

Study on Fano varieties defined over an algebraically closed field in positive characteristic

Research Project

Project/Area Number 17K05208
Research Category

Grant-in-Aid for Scientific Research (C)

Allocation TypeMulti-year Fund
Section一般
Research Field Algebra
Research InstitutionHiroshima City University

Principal Investigator

Saito Natsuo  広島市立大学, 情報科学研究科, 准教授 (70382372)

Project Period (FY) 2017-04-01 – 2022-03-31
Project Status Completed (Fiscal Year 2021)
Budget Amount *help
¥4,420,000 (Direct Cost: ¥3,400,000、Indirect Cost: ¥1,020,000)
Fiscal Year 2020: ¥910,000 (Direct Cost: ¥700,000、Indirect Cost: ¥210,000)
Fiscal Year 2019: ¥1,040,000 (Direct Cost: ¥800,000、Indirect Cost: ¥240,000)
Fiscal Year 2018: ¥1,170,000 (Direct Cost: ¥900,000、Indirect Cost: ¥270,000)
Fiscal Year 2017: ¥1,300,000 (Direct Cost: ¥1,000,000、Indirect Cost: ¥300,000)
Keywords正標数 / del Pezzo曲面 / 準楕円曲面 / ファノ多様体 / 単純特異点 / デル・ペッツォ曲面 / 代数幾何学 / 有理二重点
Outline of Final Research Achievements

We studied various properties about Fano varieties over an algebraic closed field in positive characteristic to have the following result:
1. We investigated non-F-split del Pezzo surfaces of degree 1. Especially, we showed that such surfaces are unique up to isomorphisms if the characteristic of the grould field is 5, and its automorphism group is related to the fact that the symmetric group of degree 6 has an outer automorphism.
2. We solved an open problem on the multicanonical system of quasi-elliptic surfaces with Kodaira dimension 1 in characteristic 2. Also, we analyzed the structure of Mordell-Weil group of quasi-elliptic K3 surfaces which has twenty reducible fibers of type III in characteristic 2, to construct a 20-dimensional linear code.

Academic Significance and Societal Importance of the Research Achievements

代数多様体の分類を完成させることは代数幾何学における大きな研究テーマであるが,正標数の体上では分類に役立つ定理のいくつかが成立せず,理論の構築は容易ではない。したがって,分類を行ううえで重要な役割を果たすFano多様体やそれにまつわる正標数特有の幾何的構造を解明することは大きな意義がある。本研究において特に低標数の場合に発生するいくつかの特殊な構造を記述することに成功したことは,正標数の代数多様体の分類理論の発展に資するものである。

Report

(6 results)
  • 2021 Annual Research Report   Final Research Report ( PDF )
  • 2020 Research-status Report
  • 2019 Research-status Report
  • 2018 Research-status Report
  • 2017 Research-status Report
  • Research Products

    (7 results)

All 2021 2020 2019 2018

All Journal Article (1 results) (of which Peer Reviewed: 1 results) Presentation (6 results) (of which Int'l Joint Research: 1 results,  Invited: 6 results)

  • [Journal Article] On the multicanonical systems of quasi-elliptic surfaces2021

    • Author(s)
      KATSURA Toshiyuki、SAITO Natsuo
    • Journal Title

      Journal of the Mathematical Society of Japan

      Volume: 73 Issue: 4 Pages: 1253-1261

    • DOI

      10.2969/jmsj/85058505

    • NAID

      130008106927

    • ISSN
      0025-5645, 1881-1167, 1881-2333
    • Related Report
      2021 Annual Research Report
    • Peer Reviewed
  • [Presentation] On the multicanonical systems of quasi-elliptic surfaces2021

    • Author(s)
      齋藤 夏雄
    • Organizer
      野田代数幾何学ワークショップ2021
    • Related Report
      2021 Annual Research Report
    • Invited
  • [Presentation] F分裂しないdel Pezzo曲面とその自己同型群2020

    • Author(s)
      齋藤 夏雄
    • Organizer
      第7回代数幾何学研究集会-宇部-
    • Related Report
      2019 Research-status Report
    • Invited
  • [Presentation] F分裂しないdel Pezzo曲面について2019

    • Author(s)
      齋藤 夏雄
    • Organizer
      研究集会「射影多様体の幾何とその周辺2019」
    • Related Report
      2019 Research-status Report
    • Invited
  • [Presentation] F分裂しないdel Pezzo曲面の探究2019

    • Author(s)
      齋藤 夏雄
    • Organizer
      研究集会「ファノ多様体及び関連する代数幾何学」
    • Related Report
      2019 Research-status Report
    • Invited
  • [Presentation] Fano varieties in positive characteristic and their F-splittings2018

    • Author(s)
      Natsuo Saito
    • Organizer
      Hakodate workshop on arithmetic geometry 2018
    • Related Report
      2018 Research-status Report
    • Int'l Joint Research / Invited
  • [Presentation] Deformation spaces of rational double points in small characteristic2018

    • Author(s)
      齋藤 夏雄
    • Organizer
      野田代数幾何学シンポジウム2018
    • Related Report
      2017 Research-status Report
    • Invited

URL: 

Published: 2017-04-28   Modified: 2023-01-30  

Information User Guide FAQ News Terms of Use Attribution of KAKENHI

Powered by NII kakenhi