• Search Research Projects
  • Search Researchers
  • How to Use
  1. Back to previous page

Characterization of polynomials which satisfy local functional equations

Research Project

Project/Area Number 17K05209
Research Category

Grant-in-Aid for Scientific Research (C)

Allocation TypeMulti-year Fund
Section一般
Research Field Algebra
Research InstitutionJosai University

Principal Investigator

Kogiso Takeyoshi  城西大学, 理学部, 教授 (20282296)

Project Period (FY) 2017-04-01 – 2023-03-31
Project Status Completed (Fiscal Year 2022)
Budget Amount *help
¥3,640,000 (Direct Cost: ¥2,800,000、Indirect Cost: ¥840,000)
Fiscal Year 2020: ¥650,000 (Direct Cost: ¥500,000、Indirect Cost: ¥150,000)
Fiscal Year 2019: ¥780,000 (Direct Cost: ¥600,000、Indirect Cost: ¥180,000)
Fiscal Year 2018: ¥910,000 (Direct Cost: ¥700,000、Indirect Cost: ¥210,000)
Fiscal Year 2017: ¥1,300,000 (Direct Cost: ¥1,000,000、Indirect Cost: ¥300,000)
Keywords局所関数等式 / 概均質ベクトル空間 / ゼータ超関数 / Clifford quartic form / polarization / F-多項式 / Catalecticant / homaloidal多項式 / 裏返し変換 / クラスター代数 / Legendre変換 / 極化 / 乗法的Legendre変換 / SubHankel行列 / 相対不変式 / hmaloidal多項式 / 係数付き団代数 / homaloidal polynomial / ゼータ関数 / Cluster代数 / homaloidal polynomials / Clifford quartic forms
Outline of Final Research Achievements

The following research results were obtained on pairs of polynomials satisfying local function equation.
(1) Explicit determination of local function equation associated with polarization of homaloidal polynomials and proof that prehomogeneity is maintained by polarization(2) Observation of polarization of polynomials satisfying local functional equation even if they are non-prehomogeneous homogeneous(3) Observation of prehomogenety of each uniform part of F-polynomials associated with cluster algebra with coefficients and observation of their relationship with projective manifolds(4) Observation of prehomogeneity of a section of Catalecticant determinant(5) Relationship between resultant and generalized resultants and prehomogeneous vector space

Academic Significance and Societal Importance of the Research Achievements

局所関数等式の研究は整数論では保型形式、ゼータ関数などの整数論の研究で重要であり, 今までの流れでは局所関数等式を満たす多項式のタイプはそれらの分野では概均質タイプのみしか扱ってこなかったが, 非概均質タイプまで含めた今回の研究は今までにないタイプの局所関数等式やその背後にある空間の特性を調べたものなので,整数論で、新しい現象の発見につながることが期待できる.表現論の分野では, 概均質ベクトル空間は群がreductiveであるが, 今回の研究では群がSolvableなものも含んでいて局所関数等式が多変数になり, 等質錐に付随するLaplace-Fourier変換との関係など大いに期待される.

Report

(7 results)
  • 2022 Annual Research Report   Final Research Report ( PDF )
  • 2021 Research-status Report
  • 2020 Research-status Report
  • 2019 Research-status Report
  • 2018 Research-status Report
  • 2017 Research-status Report
  • Research Products

    (42 results)

All 2023 2022 2021 2020 2019 2018 2017 Other

All Int'l Joint Research (1 results) Journal Article (10 results) (of which Peer Reviewed: 8 results,  Open Access: 4 results) Presentation (30 results) (of which Int'l Joint Research: 6 results,  Invited: 28 results) Remarks (1 results)

  • [Int'l Joint Research] Institut Elie Cartan/Lorraine University(France)

    • Related Report
      2017 Research-status Report
  • [Journal Article] A characterization of Conway-Coxeter friezes of zigzag type by rational links2022

    • Author(s)
      Takeyoshi Kogiso, Michihisa Wakui
    • Journal Title

      Osaka Journal of Mathematics

      Volume: 59(2)

    • Related Report
      2021 Research-status Report
    • Peer Reviewed / Open Access
  • [Journal Article] A characterization of Conway-Coxeter friezes of zigzag type by rational links2021

    • Author(s)
      Takeyoshi Kogiso, Michihisa Wakui
    • Journal Title

      Osaka Journal of Mathematics

      Volume: to appear

    • Related Report
      2020 Research-status Report
    • Peer Reviewed
  • [Journal Article] A bridge between Conway Coxeter friezes and rational tangles through the Kauffman bracket polynomials2019

    • Author(s)
      Takeyoshi Kogiso and Michihisa Wakui
    • Journal Title

      J. Knot Theory Ramifications

      Volume: 28 Issue: 14 Pages: 1950083-1950083

    • DOI

      10.1142/s0218216519500834

    • Related Report
      2019 Research-status Report
    • Peer Reviewed
  • [Journal Article] Kauffman bracket polynomials of Conway Coxeter friezes2019

    • Author(s)
      Takeyoshi Kogiso and Michihisa Wakui
    • Journal Title

      Proceedings of the Meeting for Study of Number Theory, Hopf Algebras and Related Topics,

      Volume: 1

    • Related Report
      2019 Research-status Report
    • Peer Reviewed
  • [Journal Article] Kauffman bracket polynomials associated to Conway-Coxeter friezes2019

    • Author(s)
      Takeyoshi Kogiso and Michihisa Wakui
    • Journal Title

      Proceedings of Meeting for Study of Number Theory, Hopf Algebras and related topics

      Volume: 1

    • Related Report
      2018 Research-status Report
    • Peer Reviewed
  • [Journal Article] Local Functional Equations attached to the polarizations of homaloidal poynomials2018

    • Author(s)
      Takeyoshi Kogiso and Fumihiro Sato
    • Journal Title

      Kyushu Journal of Mathematics

      Volume: 72

    • Related Report
      2018 Research-status Report
    • Peer Reviewed / Open Access
  • [Journal Article] Local functional equations attached to the polarizations of homaloidal polynomials2018

    • Author(s)
      Takeyoshi Kogiso and Fumihiro Sato
    • Journal Title

      Kyushu Jounal of Mathematics

      Volume: 印刷中

    • NAID

      130007521522

    • Related Report
      2017 Research-status Report
    • Peer Reviewed
  • [Journal Article] Kauffman bracket polynomials associated toConway=Coxeter Friezes2018

    • Author(s)
      Takeyoshi Kogiso
    • Journal Title

      Proceedings of Meeting for the study of Number theory, Hopf algebras and related topics

      Volume: 印刷中 Pages: 83-100

    • Related Report
      2017 Research-status Report
    • Peer Reviewed
  • [Journal Article] Conway-Coxeter Friezeを用いた有理絡み目図式のKauffman bracket多項式の計算レシピ2018

    • Author(s)
      小木曽岳義
    • Journal Title

      結び目の数学X報告集

      Volume: 10 Pages: 91-108

    • Related Report
      2017 Research-status Report
    • Open Access
  • [Journal Article] Homaloidal 多項式の極化に付随する局所関数等式2017

    • Author(s)
      小木曽岳義
    • Journal Title

      第56回実関数論・関数解析合同シンポジウム報告集

      Volume: 56 Pages: 31-100

    • Related Report
      2017 Research-status Report
    • Open Access
  • [Presentation] Two deformations of a Markov Equation and related topics2023

    • Author(s)
      Takeyoshi Kogiso
    • Organizer
      Advanced in Cluster Algebras2023
    • Related Report
      2022 Annual Research Report
    • Int'l Joint Research / Invited
  • [Presentation] Prehomogeneous Vector spaces coming from Multivariate Resultants and Veronese embeddings2023

    • Author(s)
      小木曽岳義
    • Organizer
      表現論ワークショップ
    • Related Report
      2022 Annual Research Report
  • [Presentation] 連分数とその q-変形から見える数学2022

    • Author(s)
      小木曽岳義
    • Organizer
      表現論シンポジウム概説講演
    • Related Report
      2022 Annual Research Report
    • Invited
  • [Presentation] Dodgson-Desanot-Jacobi identity と Fricke identity から 見えてくる数学とその q-変形2022

    • Author(s)
      小木曽岳義
    • Organizer
      Toyama Workshop of Quantum group aand related topics
    • Related Report
      2022 Annual Research Report
    • Invited
  • [Presentation] 縦の糸と横の糸が織りなす絡み目へのフリーズの応用2022

    • Author(s)
      小木曽岳義
    • Organizer
      青山数理セミナー
    • Related Report
      2022 Annual Research Report
    • Invited
  • [Presentation] 連分数のある種の q-変形とそのいくつかの応用2021

    • Author(s)
      小木曽岳義
    • Organizer
      神戸可積分セミナー
    • Related Report
      2021 Research-status Report
    • Invited
  • [Presentation] 連分数のある種の q-変形とそのいくつかの応用2021

    • Author(s)
      小木曽岳義
    • Organizer
      大阪大学大学院理学研究科談話会
    • Related Report
      2021 Research-status Report
    • Invited
  • [Presentation] Homaloidal 多項式はどこに存在するか?2021

    • Author(s)
      小木曽岳義
    • Organizer
      大阪大学整数論・保型形式セミナー
    • Related Report
      2021 Research-status Report
    • Invited
  • [Presentation] q-Deformation of continued fractions and its application to the Markov equation and further generalization2020

    • Author(s)
      Takeyoshi Kogiso
    • Organizer
      Kyoto automorphic form workshop
    • Related Report
      2020 Research-status Report
    • Invited
  • [Presentation] q-Deformation of continued fractions and its application to the Markov equation2020

    • Author(s)
      Takeyoshi Kogiso
    • Organizer
      The 2nd Meeting for Number theory, Hopf algebras and related topics
    • Related Report
      2020 Research-status Report
    • Invited
  • [Presentation] 連分数のq-変形のいくつかの応用とPV との接点2020

    • Author(s)
      小木曽岳義
    • Organizer
      東北大学代数学セミナー
    • Related Report
      2020 Research-status Report
    • Invited
  • [Presentation] 連分数のq-変形と特殊関数2020

    • Author(s)
      小木曽岳義
    • Organizer
      表現論ワークショップ
    • Related Report
      2019 Research-status Report
    • Invited
  • [Presentation] Cluster algebras and Knot invariants2019

    • Author(s)
      小木曽岳義
    • Organizer
      金沢大学代数学セミナー
    • Related Report
      2019 Research-status Report
    • Invited
  • [Presentation] Where do homaloidal polynomials appear?2019

    • Author(s)
      小木曽岳義
    • Organizer
      室蘭工業大学整数論セミナー
    • Related Report
      2019 Research-status Report
    • Invited
  • [Presentation] "q-Deformations of continued fractions and Knot-invariants2019

    • Author(s)
      小木曽岳義
    • Organizer
      トポロジーとコンピューター
    • Related Report
      2019 Research-status Report
    • Invited
  • [Presentation] 連分数のq-変形とその応用2019

    • Author(s)
      小木曽岳義
    • Organizer
      早稲田大学整数論セミナー
    • Related Report
      2019 Research-status Report
    • Invited
  • [Presentation] q-Deformation of a continued fraction and its applications2019

    • Author(s)
      小木曽岳義
    • Organizer
      東大数理トポロジー 火曜セミナー
    • Related Report
      2019 Research-status Report
    • Invited
  • [Presentation] 連分数のq-変形とそのMarkov方程式への応用2019

    • Author(s)
      小木曽岳義
    • Organizer
      」Meeting for Number theory , Hopf algebra and field
    • Related Report
      2019 Research-status Report
    • Invited
  • [Presentation] Local functional equations of homaloidal polynomials,2018

    • Author(s)
      Takeyoshi Kogiso
    • Organizer
      Seminare Theorie de Lie, Geometrie at Analyse, Nancy, France
    • Related Report
      2018 Research-status Report
    • Int'l Joint Research / Invited
  • [Presentation] Clifford qurtic forms and its applications2018

    • Author(s)
      Takeyoshi Kogiso
    • Organizer
      Seminare Theorie de Lie, Geometrie at Analyse, Metz, France
    • Related Report
      2018 Research-status Report
    • Int'l Joint Research / Invited
  • [Presentation] Local functional equations of homaloidal polynomials,2018

    • Author(s)
      Takeyoshi Kogiso
    • Organizer
      Laboratore de Mathematitiques de Reims , Reims , France
    • Related Report
      2018 Research-status Report
    • Int'l Joint Research / Invited
  • [Presentation] Cluster algebras and Knot invariants,2018

    • Author(s)
      Takeyoshi Kogiso
    • Organizer
      Meeting of number theory,ring theory, Hopf algebratheory and related topics
    • Related Report
      2018 Research-status Report
    • Int'l Joint Research / Invited
  • [Presentation] 団代数と結び目多項式2018

    • Author(s)
      Takeyoshi Kogiso
    • Organizer
      表現論ワークショップ
    • Related Report
      2018 Research-status Report
  • [Presentation] Snake graph, Conwa--Coxeter frieze, 有理結び目の関係2018

    • Author(s)
      Takeyoshi Kogiso
    • Organizer
      Knotting Nagoya 2018
    • Related Report
      2018 Research-status Report
    • Invited
  • [Presentation] Recipe for making Kauffman bracket by using cluster algebras of type A, B2018

    • Author(s)
      小木曽岳義
    • Organizer
      表現論ワークショップ
    • Related Report
      2017 Research-status Report
    • Invited
  • [Presentation] Recipe for making Kauffman bracket by using cluster algebras of classical types2018

    • Author(s)
      小木曽岳義
    • Organizer
      さきがけ研究集会「行列解析の展開・2」、名古屋大学大学院多元数理科学研究科
    • Related Report
      2017 Research-status Report
    • Invited
  • [Presentation] Local functional equations of homaloidal polynomials2018

    • Author(s)
      Takeyoshi Kogiso
    • Organizer
      Seminar de Institut Elie Cartan, Lorraine University, Nancy
    • Related Report
      2017 Research-status Report
    • Int'l Joint Research / Invited
  • [Presentation] Homaloidal多項式の極化に付随する局所関数等式2017

    • Author(s)
      小木曽岳義
    • Organizer
      第56回実関数論・関数解析合同シンポジウム
    • Related Report
      2017 Research-status Report
    • Invited
  • [Presentation] 3次元概均質ベクトル空間の裏返し変換から得られる結び目多項式とその応用2017

    • Author(s)
      小木曽岳義
    • Organizer
      研究集会「概均質ベクトル空間の分類とその周辺」、秋田大学教育学部
    • Related Report
      2017 Research-status Report
    • Invited
  • [Presentation] Kauffman bracket polynomials of Conway Coxeter Friezes2017

    • Author(s)
      小木曽岳義
    • Organizer
      研究集会、「結び目の数学X」、東京女子大学
    • Related Report
      2017 Research-status Report
    • Invited
  • [Remarks] IECL-seminar

    • Related Report
      2017 Research-status Report

URL: 

Published: 2017-04-28   Modified: 2024-01-30  

Information User Guide FAQ News Terms of Use Attribution of KAKENHI

Powered by NII kakenhi