Topological types and analytic invariants of complex surface singularities
Project/Area Number |
17K05216
|
Research Category |
Grant-in-Aid for Scientific Research (C)
|
Allocation Type | Multi-year Fund |
Section | 一般 |
Research Field |
Geometry
|
Research Institution | Yamagata University |
Principal Investigator |
|
Project Period (FY) |
2017-04-01 – 2022-03-31
|
Project Status |
Completed (Fiscal Year 2021)
|
Budget Amount *help |
¥3,770,000 (Direct Cost: ¥2,900,000、Indirect Cost: ¥870,000)
Fiscal Year 2020: ¥1,040,000 (Direct Cost: ¥800,000、Indirect Cost: ¥240,000)
Fiscal Year 2019: ¥780,000 (Direct Cost: ¥600,000、Indirect Cost: ¥180,000)
Fiscal Year 2018: ¥780,000 (Direct Cost: ¥600,000、Indirect Cost: ¥180,000)
Fiscal Year 2017: ¥1,170,000 (Direct Cost: ¥900,000、Indirect Cost: ¥270,000)
|
Keywords | 2次元特異点 / 幾何種数 / 2次元正規特異点 / 複素2次元特異点 / 正規節減数 / Brieskorn 完全交叉特異点 / 特異点 |
Outline of Final Research Achievements |
The aim of this research is to study fundamental analytic invariants and the structure of normal surface singularities. For Brieskorn complete intersection singularities, we obtained a formula of the normal reduction number of maximal ideals and classified the elliptic singularities. We gave examples of certain distinguished structures of singularities which are homeomorphic to a Brieskorn complete intersection singularity. For cone singularities, we obtained a simple formula of the normal reduction number. We also introduced elliptic ideals and strongly elliptic ideals and obtained their basic properties.
|
Academic Significance and Societal Importance of the Research Achievements |
代数多様体や複素解析空間には特異点が存在する.特異点の性質を捉えることで,それらの深い理解につながることがある.本研究は2次元特異点を対象に,基本的な解析的不変量や特異点の構造について,より詳しい結果を得るとともに,新たな研究課題を見出している.これらの成果はこれからの研究の進展に寄与するものと思われる.
|
Report
(6 results)
Research Products
(19 results)