• Search Research Projects
  • Search Researchers
  • How to Use
  1. Back to previous page

The application of nonsmooth analysis to the collapsing theory and exotic structure

Research Project

Project/Area Number 17K05220
Research Category

Grant-in-Aid for Scientific Research (C)

Allocation TypeMulti-year Fund
Section一般
Research Field Geometry
Research InstitutionOkayama University (2019-2021)
Yamaguchi University (2017-2018)

Principal Investigator

KONDO Kei  岡山大学, 自然科学学域, 教授 (70736123)

Co-Investigator(Kenkyū-buntansha) 内藤 博夫  山口大学, その他部局等, 名誉教授 (10127772)
中内 伸光  山口大学, 大学院創成科学研究科, 教授 (50180237)
安井 弘一  大阪大学, 情報科学研究科, 准教授 (70547009)
Project Period (FY) 2017-04-01 – 2022-03-31
Project Status Completed (Fiscal Year 2021)
Budget Amount *help
¥4,160,000 (Direct Cost: ¥3,200,000、Indirect Cost: ¥960,000)
Fiscal Year 2020: ¥1,040,000 (Direct Cost: ¥800,000、Indirect Cost: ¥240,000)
Fiscal Year 2019: ¥1,040,000 (Direct Cost: ¥800,000、Indirect Cost: ¥240,000)
Fiscal Year 2018: ¥1,040,000 (Direct Cost: ¥800,000、Indirect Cost: ¥240,000)
Fiscal Year 2017: ¥1,040,000 (Direct Cost: ¥800,000、Indirect Cost: ¥240,000)
Keywords大域リーマン幾何 / 薄滑解析(Nonsmooth Analysis) / リプシッツ写像 / 異種球面 / Reebの球面定理 / Groveと塩濱の臨界点理論 / 最小跡 / 薄滑解析 / 大域リーマン幾何学 / 異種構造 / 球面定理 / 折り紙 / 微分構造 / 微分球面定理 / 薄滑解析(Nonsmooth analysis) / 沈め込み / リーマン幾何 / 薄滑解析(Nonsmooth Analysis) / 崩壊理論
Outline of Final Research Achievements

The aim of this study was to establish and develop the singularity theory of Lipschitz maps on Riemannian manifolds from the viewpoint of nonsmooth analysis. The results obtained in this study were: the intrinsic formulation and maintenance of various concepts in nonsmooth analysis on Riemannian manifolds (including a generalization of Clarke's inverse function theorem); the definition of the adjoint of the generalized differential of Lipschitz maps between Riemannian manifolds; the establishment of an approximation theorem for Lipschitz maps between Riemannian manifolds by locally trivial fibrations; and the generalization of Reeb's sphere theorem to general Lipschitz functions as an application of the approximation theorem. In relation to exotic structures, a new differential exotic sphere theorem was obtained from the standpoint of radial curvature geometry.

Academic Significance and Societal Importance of the Research Achievements

研究成果の学術的意義は,薄滑解析の概念を適用したリプシッツ写像の特異点論が一般のリプシッツ関数に対するモース理論的体系を導く可能性を示唆する点にある。また,補助期間中に得た知見により,リーマン多様体上で内在的に定式化された薄滑解析の概念を適用し,伸び縮みの性質を持つ素材に対する折り紙の数学的定式化の可能性を見出すことができた。このことは,折り紙を用いたSTEMの技術,工学への応用及び再生医療への応用を想起するとき,薄滑解析を適用する応用研究が社会的意義を内包していることを示唆する。なお,伸び縮みの性質を持つ素材に対する折り紙の数学的定式化の研究は,令和4年度基盤研究(C)として採択されている。

Report

(6 results)
  • 2021 Annual Research Report   Final Research Report ( PDF )
  • 2020 Research-status Report
  • 2019 Research-status Report
  • 2018 Research-status Report
  • 2017 Research-status Report
  • Research Products

    (35 results)

All 2022 2021 2020 2019 2018 2017 Other

All Journal Article (14 results) (of which Peer Reviewed: 13 results,  Open Access: 3 results) Presentation (18 results) (of which Int'l Joint Research: 5 results,  Invited: 15 results) Remarks (2 results) Funded Workshop (1 results)

  • [Journal Article] Two examples of harmonic maps into spheres2022

    • Author(s)
      Misawa Masashi, Nakauchi Nobumitsu
    • Journal Title

      Advances in Geometry

      Volume: 22 Issue: 1 Pages: 23-31

    • DOI

      10.1515/advgeom-2021-0008

    • Related Report
      2021 Annual Research Report
    • Peer Reviewed
  • [Journal Article] Regularity of the m-symphonic map2021

    • Author(s)
      Masashi Misawa and Nobumitsu Nakauchi
    • Journal Title

      SN Partial Differential Equations and Applications

      Volume: 2 Issue: 2

    • DOI

      10.1007/s42985-021-00074-y

    • Related Report
      2021 Annual Research Report 2020 Research-status Report
    • Peer Reviewed
  • [Journal Article] Differentiable sphere theorems whose comparison spaces are standard sphere or exotic ones2020

    • Author(s)
      Kei KONDO and Minoru TANAKA
    • Journal Title

      Kodai Mathematical Journal

      Volume: 43 Pages: 349-365

    • NAID

      130007872701

    • Related Report
      2019 Research-status Report
    • Peer Reviewed
  • [Journal Article] Geometrically simply connected 4-manifolds and stable cohomotopy Seiberg-Witten invariants2020

    • Author(s)
      Kouichi Yasui
    • Journal Title

      Geometry & Topology

      Volume: -

    • Related Report
      2018 Research-status Report
    • Peer Reviewed / Open Access
  • [Journal Article] Stress energy tensor for symphonic maps2019

    • Author(s)
      Nobumitsu Nakauchiu
    • Journal Title

      Bollettino dell'Unione Matematica Italiana

      Volume: 12 Issue: 3 Pages: 431-440

    • DOI

      10.1007/s40574-018-0168-y

    • Related Report
      2019 Research-status Report
    • Peer Reviewed
  • [Journal Article] Stress energy tensor of C-stationary maps2019

    • Author(s)
      Nobumitsu Nakauchiu
    • Journal Title

      Journal of Geometry and Physics

      Volume: 137 Pages: 217-227

    • DOI

      10.1016/j.geomphys.2018.12.004

    • Related Report
      2019 Research-status Report 2018 Research-status Report
    • Peer Reviewed
  • [Journal Article] Liouville type theorem for symphonic maps2019

    • Author(s)
      Shigeo Kawai and Nobumitsu Nakauchi
    • Journal Title

      Differential Geometry and its Applications

      Volume: 65 Pages: 147-159

    • DOI

      10.1016/j.difgeo.2019.03.009

    • Related Report
      2019 Research-status Report
    • Peer Reviewed
  • [Journal Article] Nonexistence of twists and surgeries generating exotic 4-manifolds2019

    • Author(s)
      Kouichi Yasui
    • Journal Title

      Transactions of the American Mathematical Society

      Volume: -

    • Related Report
      2018 Research-status Report
    • Peer Reviewed / Open Access
  • [Journal Article] Remarks on weakly stationary maps into spheres2018

    • Author(s)
      Masashi Misawa, Nobumitsu Nakauchi
    • Journal Title

      Rend. Circ. Mat. Palermo, II. Ser

      Volume: 印刷中 Issue: 1 Pages: 227-236

    • DOI

      10.1007/s12215-018-0350-1

    • Related Report
      2019 Research-status Report
    • Peer Reviewed
  • [Journal Article] Global existence for the heat flow of symphonic maps into spheres2018

    • Author(s)
      Masashi Misawa, Nobumitsu Nakauchi
    • Journal Title

      Advances in Differential Equations

      Volume: 23 Pages: 693-724

    • Related Report
      2018 Research-status Report
    • Peer Reviewed
  • [Journal Article] Polyharmonic maps into the Euclidean space2018

    • Author(s)
      Nobumitsu Nakauchi, Hajime Urakawa
    • Journal Title

      Note di Matematica

      Volume: 38 Pages: 89-100

    • DOI

      10.1285/i15900932v38n1p89

    • Related Report
      2018 Research-status Report
    • Peer Reviewed
  • [Journal Article] On twists and surgeries generating exotic smooth structures2018

    • Author(s)
      Kouichi Yasui
    • Journal Title

      RIMS Kokyuroku

      Volume: 2099 Pages: 30-35

    • Related Report
      2018 Research-status Report
    • Open Access
  • [Journal Article] Approximations of Lipschitz maps via immersions2017

    • Author(s)
      Kei Kondo, Minoru Tanaka
    • Journal Title

      Nonlinear Analysis

      Volume: 155 Pages: 219-249

    • DOI

      10.1016/j.na.2017.01.022

    • Related Report
      2017 Research-status Report
    • Peer Reviewed
  • [Journal Article] Grassmann geometry on the 3-dimensional non-unimodular Lie groups2017

    • Author(s)
      Jun-ichi Inoguchi, Hiroo Naitoh
    • Journal Title

      Hokkaido Mathematical Journal

      Volume: 印刷中

    • Related Report
      2017 Research-status Report
    • Peer Reviewed
  • [Presentation] A Variational Problem on Conformality of Maps and Related Problems2022

    • Author(s)
      Nobumitsu Nakauchi
    • Organizer
      Workshop on Differential Geometry and Geometric Analysis -- Celebration of Professor Miyuki Koiso's Retirement --
    • Related Report
      2021 Annual Research Report
    • Int'l Joint Research / Invited
  • [Presentation] Stably exotic pairs of closed 4-manifolds and their applications2021

    • Author(s)
      安井弘一
    • Organizer
      研究集会「4次元トポロジー」
    • Related Report
      2021 Annual Research Report
  • [Presentation] Huberの有限連結性定理の高次元化について2020

    • Author(s)
      近藤 慶、篠田祐佑
    • Organizer
      日本数学会・2020年度年会 秋季総合分科会、熊本大学(オンライン)
    • Related Report
      2020 Research-status Report
  • [Presentation] Minimal genus functions and constraints on 4-manifolds2020

    • Author(s)
      Kouichi Yasui
    • Organizer
      International Workshop on 4-Manifold Theory and Gauge Theory
    • Related Report
      2020 Research-status Report
    • Int'l Joint Research / Invited
  • [Presentation] Embedded surfaces and the simple type conjecture2020

    • Author(s)
      安井弘一
    • Organizer
      研究集会「4次元トポロジー」、大阪大学(オンライン)
    • Related Report
      2020 Research-status Report
  • [Presentation] リーマン幾何における薄滑解析とリプシッツ写像の近似定理2019

    • Author(s)
      近藤 慶
    • Organizer
      合宿セミナー 2019 in 倉敷(倉敷山陽ハイツ,岡山県倉敷市,12月14日)
    • Related Report
      2019 Research-status Report
    • Invited
  • [Presentation] リーマン幾何における薄滑解析とリプシッツ写像の近似定理2019

    • Author(s)
      近藤 慶
    • Organizer
      岡山大学理学部談話会(岡山大学,岡山県岡山市,10月21日)
    • Related Report
      2019 Research-status Report
    • Invited
  • [Presentation] Minimal genus functions and smooth structures of 4-manifolds2019

    • Author(s)
      Kouichi Yasui
    • Organizer
      Workshop on Lefschetz Pencils and Low dimensional Topology (Hokkaido University,6月2日)
    • Related Report
      2019 Research-status Report
    • Int'l Joint Research / Invited
  • [Presentation] Nonexistence of twists and surgeries generating exotic 4-manifolds2019

    • Author(s)
      Kouichi Yasui
    • Organizer
      Workshop on low-dimensional topology (Korea Institute for Advanced Study, Korea, 5月1日)
    • Related Report
      2019 Research-status Report
    • Int'l Joint Research / Invited
  • [Presentation] Minimal genus functions and smooth structures of 4-manifolds2019

    • Author(s)
      Kouichi Yasui
    • Organizer
      Workshop on low-dimensional topology (Korea Institute for Advanced Study, Korea, 5月1日)
    • Related Report
      2019 Research-status Report
    • Int'l Joint Research / Invited
  • [Presentation] Smooth 4-manifolds and geometric simple connectivity2019

    • Author(s)
      安井弘一
    • Organizer
      京都大学数学教室談話会(京都大学,10月30日)
    • Related Report
      2019 Research-status Report
    • Invited
  • [Presentation] 4次元多様体の微分構造と幾何学的単連結性2019

    • Author(s)
      安井弘一
    • Organizer
      広島大学談話会(広島大学,6月18日)
    • Related Report
      2019 Research-status Report
    • Invited
  • [Presentation] リーマン対称空間のグラスマン幾何的曲面論2018

    • Author(s)
      内藤博夫
    • Organizer
      研究集会「部分多様体幾何とリー群作用2018」,東京理科大学・森戸記念館(東京都・新宿区神楽坂)
    • Related Report
      2018 Research-status Report
    • Invited
  • [Presentation] 写像の共形性に関する変分問題と, その研究過程で現れた変分問題2018

    • Author(s)
      中内伸光
    • Organizer
      金沢研究集会「多様体上の微分方程式」,金沢大学サテライトプラザ(金沢市)
    • Related Report
      2018 Research-status Report
    • Invited
  • [Presentation] 対称空間とグラスマン幾何2018

    • Author(s)
      内藤博夫
    • Organizer
      第17回 秋葉原微分幾何セミナー,秋葉原ダイビル12階 首都大学東京 (東京都・千代田区)
    • Related Report
      2017 Research-status Report
    • Invited
  • [Presentation] Hopfのピンチング予想から微分異種球面定理へ2018

    • Author(s)
      近藤 慶
    • Organizer
      榎本一之教授退職直前ワークショップ,東京工業大学(東京都目黒区大岡山)
    • Related Report
      2017 Research-status Report
    • Invited
  • [Presentation] Hopfのピンチング予想から微分異種球面定理へ2018

    • Author(s)
      近藤 慶
    • Organizer
      日本数学会 2018年度年会春分科会,東京大学(東京都目黒区駒場)
    • Related Report
      2017 Research-status Report
    • Invited
  • [Presentation] Hopfのピンチング予想から微分異種球面定理へ2017

    • Author(s)
      近藤 慶
    • Organizer
      4次元トポロジーセミナー,大阪大学(大阪府豊中市)
    • Related Report
      2017 Research-status Report
    • Invited
  • [Remarks] researchmap - マイポータル -

    • URL

      https://researchmap.jp/7000021893

    • Related Report
      2020 Research-status Report
  • [Remarks] 岡山大学 研究者総覧

    • URL

      https://soran.cc.okayama-u.ac.jp/html/9aabd4f0d455679d74506e4da22f6611_ja.html

    • Related Report
      2020 Research-status Report
  • [Funded Workshop] The Cut Locus 2018 (内容:幾何,解析,最適輸送,最適制御等の国内外の専門家が最小跡(cut locus)に関連する研究発表を行い,本研究会を通し各分野で独立研究されていた最小跡に関する情報の交換を行った.)2018

    • Related Report
      2018 Research-status Report

URL: 

Published: 2017-04-28   Modified: 2023-01-30  

Information User Guide FAQ News Terms of Use Attribution of KAKENHI

Powered by NII kakenhi