• Search Research Projects
  • Search Researchers
  • How to Use
  1. Back to previous page

Geometry of Lie group actions and submanifolds associated to symmetric pairs

Research Project

Project/Area Number 17K05223
Research Category

Grant-in-Aid for Scientific Research (C)

Allocation TypeMulti-year Fund
Section一般
Research Field Geometry
Research InstitutionTokyo Metropolitan University

Principal Investigator

Sakai Takashi  東京都立大学, 理学研究科, 教授 (30381445)

Project Period (FY) 2017-04-01 – 2022-03-31
Project Status Completed (Fiscal Year 2021)
Budget Amount *help
¥3,900,000 (Direct Cost: ¥3,000,000、Indirect Cost: ¥900,000)
Fiscal Year 2019: ¥1,300,000 (Direct Cost: ¥1,000,000、Indirect Cost: ¥300,000)
Fiscal Year 2018: ¥1,300,000 (Direct Cost: ¥1,000,000、Indirect Cost: ¥300,000)
Fiscal Year 2017: ¥1,300,000 (Direct Cost: ¥1,000,000、Indirect Cost: ¥300,000)
Keywords対称空間 / 等質空間 / 対称対 / 対称三対 / 対蹠集合 / 旗多様体 / Lagrange部分多様体 / Floerホモロジー / s多様体 / 部分多様体 / 二重調和写像
Outline of Final Research Achievements

In this research project, we studied structures of the intersection of two real forms in a complex flag manifold. We showed that the intersection is an antipodal set of the complex flag manifold when two real forms intersect transversely. As an application of the antipodal structure of the intersection, we calculated the Z_2-Floer homology of a pair of real forms in a complex flag manifold equipped with a Kahler-Einstein metric.
We introduced the notion of generalized s-manifolds as a generalization of symmetric spaces. We gave a method of constructing generalized s-manifolds using Γ-symmetric pairs, and studied their maximal antipodal sets and antipodal numbers. As a generalization of symmetric R-spaces, we gave natural Γ-symmetric structures on R-spaces, and described their maximal antipodal sets explicitly.

Academic Significance and Societal Importance of the Research Achievements

対称対およびルート系の理論の一般化が,複素旗多様体内の実形の交叉の研究や,二重調和部分多様体の研究など幾何学の研究において有用であることがわかった.本研究課題において得られた結果および技術は今後の研究に大いに役立つものと期待される.
本研究課題において,対称空間の一般化概念として一般化されたs多様体を導入した.これは非可換群やLie群などこれまでにない対称性を持つ空間であり,今後更なる研究の進展が期待される.また,本研究課題において得られたR空間上のΓ対称空間の構造は対称R空間の自然な拡張であると言え,学術的に意義のあるものである.

Report

(6 results)
  • 2021 Annual Research Report   Final Research Report ( PDF )
  • 2020 Research-status Report
  • 2019 Research-status Report
  • 2018 Research-status Report
  • 2017 Research-status Report
  • Research Products

    (25 results)

All 2022 2021 2020 2019 2018 2017 Other

All Journal Article (5 results) (of which Int'l Joint Research: 2 results,  Open Access: 2 results,  Peer Reviewed: 4 results) Presentation (17 results) (of which Int'l Joint Research: 5 results,  Invited: 11 results) Remarks (2 results) Funded Workshop (1 results)

  • [Journal Article] 対称空間の一般化と対蹠集合2022

    • Author(s)
      酒井 高司
    • Journal Title

      数理解析研究所講究録

      Volume: 2210 Pages: 42-56

    • Related Report
      2021 Annual Research Report
    • Open Access
  • [Journal Article] A survey on natural Γ-symmetric structures on R-spaces2022

    • Author(s)
      Peter Quast and Takashi Sakai
    • Journal Title

      Differential Geometry and Global Analysis: In Honor of Tadashi Nagano, Contemporary Mathematics

      Volume: 777 Pages: 185-197

    • Related Report
      2021 Annual Research Report
    • Peer Reviewed / Int'l Joint Research
  • [Journal Article] Area-minimizing cones over minimal embeddings of R-spaces2021

    • Author(s)
      Shinji Ohno and Takashi Sakai
    • Journal Title

      Josai Mathematical Monographs

      Volume: 13 Pages: 69-91

    • DOI

      10.20566/13447777_13_69

    • NAID

      120007027896

    • URL

      https://libir.josai.ac.jp/il/meta_pub/G0000284repository_JOS-13447777-1306

    • Related Report
      2020 Research-status Report
    • Peer Reviewed
  • [Journal Article] Natural Γ-symmetric structures on R-spaces2020

    • Author(s)
      P. Quast and T. Sakai
    • Journal Title

      Journal de Mathematiques Pures et Appliquees

      Volume: -

    • Related Report
      2019 Research-status Report
    • Peer Reviewed / Int'l Joint Research
  • [Journal Article] Biharmonic homogeneous submanifolds in compact symmetric spaces and compact Lie groups2018

    • Author(s)
      Shinji Ohno, Takashi Sakai and Hajime Urakawa
    • Journal Title

      Hiroshima Mathematical Journal

      Volume: 印刷中

    • Related Report
      2017 Research-status Report
    • Peer Reviewed / Open Access
  • [Presentation] Riemann多様体間の写像の第二基本形式から定まる積分不変量に関する第一変分公式2022

    • Author(s)
      秋山梨佳,酒井高司,佐藤雄一郎
    • Organizer
      日本数学会2022年度年会
    • Related Report
      2021 Annual Research Report
  • [Presentation] 対称空間の一般化と対蹠集合2021

    • Author(s)
      酒井高司
    • Organizer
      部分多様体論と関連する幾何構造研究の深化と融合
    • Related Report
      2021 Annual Research Report
    • Invited
  • [Presentation] Natural Γ-symmetric structures on R-spaces and related topics2021

    • Author(s)
      酒井高司
    • Organizer
      対称空間と群作用の幾何学
    • Related Report
      2021 Annual Research Report
  • [Presentation] 対称空間と対蹠集合の一般化について2020

    • Author(s)
      酒井高司
    • Organizer
      広島幾何学研究集会
    • Related Report
      2020 Research-status Report
    • Invited
  • [Presentation] Antipodal sets of generalized s-manifolds2020

    • Author(s)
      酒井高司
    • Organizer
      対称空間の部分多様体とその時間発展
    • Related Report
      2020 Research-status Report
    • Invited
  • [Presentation] Natural Γ-symmetric structures on R-spaces2020

    • Author(s)
      T. Sakai
    • Organizer
      The 18th OCAMI-RIRCM Joint Differential Geometry Workshop on Differential Geometry of Submanifolds in Symmetric Spaces and Related Problems'
    • Related Report
      2019 Research-status Report
    • Invited
  • [Presentation] Natural Γ-symmetric structures on R-spaces2020

    • Author(s)
      P. Quast and T. Sakai
    • Organizer
      日本数学会2020年度年会
    • Related Report
      2019 Research-status Report
  • [Presentation] Toward classification of biharmonic homogeneous hypersurfaces in compact symmetric spaces2019

    • Author(s)
      T. Sakai
    • Organizer
      Workshop on the Isoparametric Theory
    • Related Report
      2019 Research-status Report
    • Int'l Joint Research / Invited
  • [Presentation] Natural Γ-symmetric structures on R-spaces2019

    • Author(s)
      酒井高司
    • Organizer
      部分多様体論・湯沢2019
    • Related Report
      2019 Research-status Report
  • [Presentation] 一般化されたs多様体の対蹠集合2019

    • Author(s)
      酒井高司
    • Organizer
      幾何学と組合せ論2019
    • Related Report
      2018 Research-status Report
    • Invited
  • [Presentation] Antipodal sets of generalized s-manifolds2019

    • Author(s)
      Shinji Ohno, Takashi Sakai, and Yasunori Terauchi
    • Organizer
      AMS Sectional Meeting
    • Related Report
      2018 Research-status Report
    • Int'l Joint Research / Invited
  • [Presentation] 複素旗多様体の実形の交叉とFloerホモロジーへの応用―合同とは限らない実形の場合2018

    • Author(s)
      酒井高司
    • Organizer
      部分多様体幾何とリー群作用2018
    • Related Report
      2018 Research-status Report
    • Invited
  • [Presentation] 一般化されたs多様体の対蹠集合2018

    • Author(s)
      大野晋司,酒井高司,寺内泰紀
    • Organizer
      日本数学会2018年度秋季総合分科会
    • Related Report
      2018 Research-status Report
  • [Presentation] Antipodal sets of generalized s-manifolds2018

    • Author(s)
      Shinji Ohno, Takashi Sakai, and Yasunori Terauchi
    • Organizer
      2018 Joint Meeting of the Korean Mathematical Society and the German Mathematical Society
    • Related Report
      2018 Research-status Report
    • Int'l Joint Research / Invited
  • [Presentation] 複素旗多様体内の二つの実形のFloerホモロジー2018

    • Author(s)
      井川治,入江博,奥田隆幸,酒井高司,田崎博之
    • Organizer
      日本数学会2018年度年会
    • Related Report
      2017 Research-status Report
  • [Presentation] The intersection of two real flag manifolds in a complex flag manifold2018

    • Author(s)
      Takashi Sakai
    • Organizer
      Geometry of Submanifolds and Integrable Systems
    • Related Report
      2017 Research-status Report
    • Int'l Joint Research / Invited
  • [Presentation] The intersection of two real flag manifolds in a complex flag manifold2017

    • Author(s)
      Takashi Sakai
    • Organizer
      2017 Korean Mathematical Society Spring Meeting
    • Related Report
      2017 Research-status Report
    • Int'l Joint Research / Invited
  • [Remarks] 酒井高司のページ

    • URL

      https://www.comp.tmu.ac.jp/tsakai/

    • Related Report
      2021 Annual Research Report 2020 Research-status Report
  • [Remarks] 酒井高司のページ

    • URL

      http://www.comp.tmu.ac.jp/tsakai/

    • Related Report
      2019 Research-status Report 2018 Research-status Report 2017 Research-status Report
  • [Funded Workshop] The 15th OCAMI-RIRCM Joint Differential Geometry Workshop & The 3rd OCAMI-KOBE-WASEDA Joint International Workshop "Geometry of Submanifolds and Integrable Systems"2018

    • Related Report
      2017 Research-status Report

URL: 

Published: 2017-04-28   Modified: 2023-01-30  

Information User Guide FAQ News Terms of Use Attribution of KAKENHI

Powered by NII kakenhi