• Search Research Projects
  • Search Researchers
  • How to Use
  1. Back to previous page

A study on Saito structure for complex reflection groups

Research Project

Project/Area Number 17K05228
Research Category

Grant-in-Aid for Scientific Research (C)

Allocation TypeMulti-year Fund
Section一般
Research Field Geometry
Research InstitutionTokyo Denki University

Principal Investigator

Minabe Satoshi  東京電機大学, 工学部, 准教授 (30455688)

Project Period (FY) 2017-04-01 – 2022-03-31
Project Status Completed (Fiscal Year 2021)
Budget Amount *help
¥3,250,000 (Direct Cost: ¥2,500,000、Indirect Cost: ¥750,000)
Fiscal Year 2019: ¥910,000 (Direct Cost: ¥700,000、Indirect Cost: ¥210,000)
Fiscal Year 2018: ¥910,000 (Direct Cost: ¥700,000、Indirect Cost: ¥210,000)
Fiscal Year 2017: ¥1,430,000 (Direct Cost: ¥1,100,000、Indirect Cost: ¥330,000)
Keywords複素鏡映群 / 斎藤構造 / 平坦不変式 / 齋藤構造
Outline of Final Research Achievements

A finite subgroup of a general linear group is called a complex reflection group if it is generated by linear transformations of finite order which fix a hyperplane point-wise. We have studied the existence and uniqueness problem of Saito structures, a certain flat structure, on the orbit spaces of complex reflection groups. We reconstructed Saito structures for the duality groups first constructed by Kato, Mano, and Sekiguchi from the viewpoint of almost duality of Saito structures, and showed the uniqueness. Furthermore, we extend the results to all the finite complex groups which are not necessarily duality groups and obtained the answer for the existence and the uniqueness problem for Saito structures.

Academic Significance and Societal Importance of the Research Achievements

有限実鏡映群の軌道空間上に標準的なフロベニウス多様体構造が存在することは、斎藤らによって1970年代から知られていた。一方, 有限複素鏡映群の場合は、2016年に加藤・眞野・関口が、双対性群と呼ばれるクラスの有限複素鏡映群の軌道空間上に斎藤構造が存在することを示した。これは, 新しく発見された斎藤構造を許容する空間の重要な例であり、ミラー対称性など様々な分野の研究と関連することが期待される。従って、これに関する知見を深めることは基本的な研究課題であり、本研究の成果をもとにして今後さらなる研究の発展が期待できる。

Report

(6 results)
  • 2021 Annual Research Report   Final Research Report ( PDF )
  • 2020 Research-status Report
  • 2019 Research-status Report
  • 2018 Research-status Report
  • 2017 Research-status Report
  • Research Products

    (10 results)

All 2021 2020 2018 2017

All Journal Article (5 results) (of which Peer Reviewed: 4 results,  Open Access: 2 results) Presentation (5 results) (of which Int'l Joint Research: 1 results,  Invited: 4 results)

  • [Journal Article] Mixed Frobenius structure and the local A-model2020

    • Author(s)
      Yukiko Konishi, Satoshi Minabe
    • Journal Title

      Kyoto J. Math

      Volume: 60(3) Issue: 3 Pages: 997-1032

    • DOI

      10.1215/21562261-2019-0053

    • Related Report
      2020 Research-status Report
    • Peer Reviewed
  • [Journal Article] Almost duality for Saito structure and complex reflection groups II: the case of Coxeter and Shephard groups2020

    • Author(s)
      Yukiko Konishi, Satoshi Minabe
    • Journal Title

      Pure and Applied Mathematics Quarterly

      Volume: 16(3) Issue: 3 Pages: 721-754

    • DOI

      10.4310/pamq.2020.v16.n3.a12

    • Related Report
      2020 Research-status Report
    • Peer Reviewed
  • [Journal Article] On the cohomology of some moduli spaces of weighted stable curves of genus zero and one2018

    • Author(s)
      三鍋聡司
    • Journal Title

      研究集会「リーマン面に関連する位相幾何学」予稿集

      Volume: なし Pages: 120-126

    • Related Report
      2018 Research-status Report
  • [Journal Article] Almost duality for Saito structure and complex reflection groups2018

    • Author(s)
      Y.Konishi, S.Minabe, and Y.Shiraishi
    • Journal Title

      Journal of Integrable Systems

      Volume: 3 Issue: 1 Pages: 1-48

    • DOI

      10.1093/integr/xyy003

    • Related Report
      2017 Research-status Report
    • Peer Reviewed / Open Access
  • [Journal Article] A Combinatorial Study on Quiver Varieties2017

    • Author(s)
      S. Fuji and S. Minabe
    • Journal Title

      Symmetry, Integrability and Geometry: Methods and Applications

      Volume: 13-052 Pages: 1-28

    • DOI

      10.3842/sigma.2017.052

    • Related Report
      2017 Research-status Report
    • Peer Reviewed / Open Access
  • [Presentation] Almost duality for Saito structure and complex reflection groups: the case of Coxeter and Shephard groups2021

    • Author(s)
      Satoshi Minabe
    • Organizer
      Frobenius manifolds and related topics
    • Related Report
      2021 Annual Research Report
    • Int'l Joint Research / Invited
  • [Presentation] On the cohomology of some moduli spaces of weighted stable curves of genus zero and one2018

    • Author(s)
      三鍋聡司
    • Organizer
      研究集会「リーマン面に関連する位相幾何学」
    • Related Report
      2018 Research-status Report
    • Invited
  • [Presentation] 斎藤構造の概双対性と複素鏡映群2017

    • Author(s)
      三鍋聡司
    • Organizer
      Encounter with Mathematics
    • Related Report
      2017 Research-status Report
    • Invited
  • [Presentation] 斎藤構造の概双対性と複素鏡映群2017

    • Author(s)
      小西由紀子・三鍋聡司・白石勇貴
    • Organizer
      日本数学会秋季総合分科会
    • Related Report
      2017 Research-status Report
  • [Presentation] Almost duality for Saito structure and complex reflection groups2017

    • Author(s)
      三鍋聡司
    • Organizer
      多弦数理物理セミナー
    • Related Report
      2017 Research-status Report
    • Invited

URL: 

Published: 2017-04-28   Modified: 2023-01-30  

Information User Guide FAQ News Terms of Use Attribution of KAKENHI

Powered by NII kakenhi