• Search Research Projects
  • Search Researchers
  • How to Use
  1. Back to previous page

New development of topological recursion obtained from period integrals

Research Project

Project/Area Number 17K05234
Research Category

Grant-in-Aid for Scientific Research (C)

Allocation TypeMulti-year Fund
Section一般
Research Field Geometry
Research InstitutionKisarazu National College of Technology

Principal Investigator

Tadokoro Yuuki  木更津工業高等専門学校, 基礎学系, 准教授 (10435414)

Project Period (FY) 2017-04-01 – 2022-03-31
Project Status Completed (Fiscal Year 2021)
Budget Amount *help
¥2,600,000 (Direct Cost: ¥2,000,000、Indirect Cost: ¥600,000)
Fiscal Year 2019: ¥780,000 (Direct Cost: ¥600,000、Indirect Cost: ¥180,000)
Fiscal Year 2018: ¥910,000 (Direct Cost: ¥700,000、Indirect Cost: ¥210,000)
Fiscal Year 2017: ¥910,000 (Direct Cost: ¥700,000、Indirect Cost: ¥210,000)
Keywordsリーマン面 / モジュライ空間 / 位相的漸化式 / 周期 / 調和体積 / 写像類群 / 反復積分 / トポロジー / リーマン面のモジュライ空間
Outline of Final Research Achievements

The moduli space of compact Riemann surfaces is the space of all biholomorphism classes of compact Riemann surfaces. The harmonic volume of compact Riemann surfaces is a complex analytic invariant using Chen's iterated integrals. It enables a quantitative study of the local structure of the moduli space. We obtain its new value for a certain pointed hyperelliptic curve. We explain the relationship between the harmonic volume and first extended Johnson homomorphism on the mapping class group of a pointed oriented closed surface.

Academic Significance and Societal Importance of the Research Achievements

モジュライ空間とはリーマン面全体からなる空間であり,19世紀のリーマンに始まり,複素解析学,微分位相幾何学,代数幾何学,物理学など様々な分野において,重要な研究対象とされてきた.モジュライ空間の局所的な構造を定量的に理解するために,調和体積のような複素解析的不変量の明示的な導出が重要である.対称性を利用して,特別なリーマン面の調和体積を導出した.モジュライ空間と曲面の写像類群は深い関連があり,写像類群の拡大ジョンソン準同型と調和体積を結びつけることができた.このようにして,モジュライ空間の局所的な構造に対する新たな知見を得た.

Report

(6 results)
  • 2021 Annual Research Report   Final Research Report ( PDF )
  • 2020 Research-status Report
  • 2019 Research-status Report
  • 2018 Research-status Report
  • 2017 Research-status Report
  • Research Products

    (11 results)

All 2020 2019 2018 2017 Other

All Journal Article (1 results) (of which Peer Reviewed: 1 results) Presentation (8 results) (of which Int'l Joint Research: 1 results,  Invited: 5 results) Remarks (2 results)

  • [Journal Article] Pointed harmonic volume and its relation to the extended Johnson homomorphism2020

    • Author(s)
      Yuuki Tadokoro
    • Journal Title

      Journal of Topology and Analysis

      Volume: 12 Issue: 01 Pages: 87-103

    • DOI

      10.1142/s1793525319500407

    • Related Report
      2019 Research-status Report 2018 Research-status Report
    • Peer Reviewed
  • [Presentation] Nonlinear O(3) sigma model in discrete complex analysis2020

    • Author(s)
      田所勇樹
    • Organizer
      日本数学会秋季総合分科会
    • Related Report
      2020 Research-status Report
  • [Presentation] Pointed harmonic volume and its relation to the extended Johnson homomorphism2019

    • Author(s)
      Yuuki Tadokoro
    • Organizer
      Workshop: Johnson homomorphisms and related topics 2019
    • Related Report
      2019 Research-status Report
    • Int'l Joint Research / Invited
  • [Presentation] Pointed harmonic volume and its relation to the extended Johnson homomorphism2019

    • Author(s)
      田所勇樹
    • Organizer
      東北複素解析セミナー,東北大学情報科学研究科
    • Related Report
      2018 Research-status Report
    • Invited
  • [Presentation] Pointed harmonic volume and its relation to the extended Johnson homomorphism2019

    • Author(s)
      田所勇樹
    • Organizer
      東工大複素解析セミナー,東京工業大学理学院
    • Related Report
      2018 Research-status Report
    • Invited
  • [Presentation] Pointed harmonic volume and its relation to extended Johnson homomorphism2018

    • Author(s)
      田所勇樹
    • Organizer
      幾何学コロキウム,北海道大学理学部
    • Related Report
      2018 Research-status Report
    • Invited
  • [Presentation] Pointed harmonic volume and its relation to the extended Johnson homomorphism2018

    • Author(s)
      田所勇樹
    • Organizer
      研究集会「リーマン面に関連する位相幾何学」,東京大学大学院数理科学研究科
    • Related Report
      2018 Research-status Report
  • [Presentation] Pointed harmonic volume and its relation to extended Johnson homomorphism2018

    • Author(s)
      田所勇樹
    • Organizer
      日本数学会2018年度年会、一般講演
    • Related Report
      2017 Research-status Report
  • [Presentation] Nonlinear O(3) sigma model in discrete complex analysis2017

    • Author(s)
      田所勇樹
    • Organizer
      研究集会「ストリングトポロジーとその周辺」
    • Related Report
      2017 Research-status Report
    • Invited
  • [Remarks] researchmap

    • URL

      https://researchmap.jp/ytadokoro/

    • Related Report
      2019 Research-status Report
  • [Remarks] researchmap

    • URL

      https://researchmap.jp/read0142336/

    • Related Report
      2018 Research-status Report

URL: 

Published: 2017-04-28   Modified: 2023-01-30  

Information User Guide FAQ News Terms of Use Attribution of KAKENHI

Powered by NII kakenhi