• Search Research Projects
  • Search Researchers
  • How to Use
  1. Back to previous page

Asymptotic behaviors of quantum invariants of knots and three-manifolds

Research Project

Project/Area Number 17K05239
Research Category

Grant-in-Aid for Scientific Research (C)

Allocation TypeMulti-year Fund
Section一般
Research Field Geometry
Research InstitutionTohoku University

Principal Investigator

Murakami Hitoshi  東北大学, 情報科学研究科, 教授 (70192771)

Co-Investigator(Kenkyū-buntansha) 藤 博之  香川大学, 教育学部, 准教授 (50391719)
樋上 和弘  九州大学, 数理学研究院, 准教授 (60262151)
Project Period (FY) 2017-04-01 – 2021-03-31
Project Status Completed (Fiscal Year 2020)
Budget Amount *help
¥4,420,000 (Direct Cost: ¥3,400,000、Indirect Cost: ¥1,020,000)
Fiscal Year 2019: ¥1,430,000 (Direct Cost: ¥1,100,000、Indirect Cost: ¥330,000)
Fiscal Year 2018: ¥1,430,000 (Direct Cost: ¥1,100,000、Indirect Cost: ¥330,000)
Fiscal Year 2017: ¥1,560,000 (Direct Cost: ¥1,200,000、Indirect Cost: ¥360,000)
Keywords結び目 / 色付きJones多項式 / 量子不変量 / 体積予想 / Chern-Simons不変量 / ねじれReidemeister torsion / WRT不変量 / 3次元多様体 / Seifert fibered space / Jones 多項式 / 基本群の表現 / Reidemeister torsion / Jones多項式 / 量子位相幾何学 / トポロジー / 幾何学 / 数理物理
Outline of Final Research Achievements

We study a topological interpretation of the asymptotic behavior of the colored Jones polynomial of a knot.
Especially, we show that for an iterated torus knot, one can obtain the Chern-Simons invariant and the twisted Reidemeister torsion of the knot complement from the asymptotic expansion of the colored Jones polynomial. Moreover, we obtain a relationship of the complex number in the parameter of the colored Jones polynomial to the parameter used to define the Chern-Simons invariant and the Reidemeister torsion. Indeed, we prove that this parameter determines a representation of the knot group to the Lie group SL(2;C).

Academic Significance and Societal Importance of the Research Achievements

本研究は,結び目の体積予想に動機づけられている.
体積予想は,R. Kashaev氏によって提唱された予想を村上順氏と研究代表者によって今の形に拡張・整理されたものであり,「結び目の色つきJones多項式のある種の極限は,その結び目補空間の体積を決定する」と述べることができる.この予想は結び目理論研究者をはじめとする位相幾何学者のみならず理論物理学者も注目するものとなった.
本研究は,本来の体積予想をさらに拡張した予想に関する研究であり,体積予想を研究する上でも価値があると信じる.

Report

(5 results)
  • 2020 Annual Research Report   Final Research Report ( PDF )
  • 2019 Research-status Report
  • 2018 Research-status Report
  • 2017 Research-status Report
  • Research Products

    (28 results)

All 2021 2020 2019 2018 2017

All Journal Article (10 results) (of which Int'l Joint Research: 5 results,  Peer Reviewed: 10 results,  Open Access: 5 results) Presentation (15 results) (of which Int'l Joint Research: 7 results,  Invited: 12 results) Book (2 results) Funded Workshop (1 results)

  • [Journal Article] Kashaev invariants of twice-iterated torus knots2021

    • Author(s)
      Murakami Hitoshi、Tran Anh T.
    • Journal Title

      Topology and its Applications

      Volume: 290 Pages: 107602-107602

    • DOI

      10.1016/j.topol.2021.107602

    • Related Report
      2020 Annual Research Report
    • Peer Reviewed / Int'l Joint Research
  • [Journal Article] Witten-Reshetikhin-Turaev Function for a Knot in Seifert Manifolds2021

    • Author(s)
      Hiroyuki Fuji, Kohei Iwaki, Hitoshi Murakami and Yuji Terashima
    • Journal Title

      Communications in Mathematical Physics

      Volume: - Issue: 1 Pages: 225-251

    • DOI

      10.1007/s00220-021-03953-y

    • Related Report
      2020 Annual Research Report
    • Peer Reviewed / Open Access
  • [Journal Article] Non-semisimple invariants and Habiro's series2021

    • Author(s)
      A.Beliakova, K.Hikami
    • Journal Title

      Topology and Geometry: A Collection of Papers dedicated to Turaev

      Volume: -

    • Related Report
      2020 Annual Research Report
    • Peer Reviewed / Int'l Joint Research
  • [Journal Article] The twisted Reidemeister torsion of an iterated torus knot.2019

    • Author(s)
      Hitoshi Murakami
    • Journal Title

      Topology App.

      Volume: 257 Pages: 22-66

    • DOI

      10.1016/j.topol.2019.02.012

    • Related Report
      2019 Research-status Report 2018 Research-status Report
    • Peer Reviewed
  • [Journal Article] DAHA and skein algebra on surface: double-torus knots2019

    • Author(s)
      K. Hikami
    • Journal Title

      Letters in Mathematical Physics

      Volume: 109 Issue: 10 Pages: 2305-2358

    • DOI

      10.1007/s11005-019-01189-5

    • Related Report
      2019 Research-status Report
    • Peer Reviewed / Open Access
  • [Journal Article] Janossy densities for chiral random matrix ensembles and their applications to two-color QCD2019

    • Author(s)
      Fuji Hiroyuki、Kanamori Issaku、Nishigaki Shinsuke M.
    • Journal Title

      Journal of High Energy Physics

      Volume: 08 Issue: 8 Pages: 053-053

    • DOI

      10.1007/jhep08(2019)053

    • Related Report
      2019 Research-status Report
    • Peer Reviewed / Open Access
  • [Journal Article] Reconstructing GKZ via topological recursion2019

    • Author(s)
      Hiroyuki Fuji, Kohei Iwaki, Masahide Manabe, Ikuo Satake
    • Journal Title

      Communications in Mathematical Physics

      Volume: 371 Issue: 3 Pages: 839-920

    • DOI

      10.1007/s00220-019-03590-6

    • Related Report
      2019 Research-status Report
    • Peer Reviewed / Open Access / Int'l Joint Research
  • [Journal Article] Note on Character Varieties and Cluster Algebras2019

    • Author(s)
      Hikami Kazuhiro
    • Journal Title

      Symmetry, Integrability and Geometry: Methods and Applications

      Volume: 15 Pages: 3-35

    • DOI

      10.3842/sigma.2019.003

    • Related Report
      2018 Research-status Report
    • Peer Reviewed / Open Access
  • [Journal Article] Root polytopes, parking functions, and the HOMFLY polynomial2017

    • Author(s)
      Kalman, Tamas and Murakami, Hitoshi
    • Journal Title

      Quantum Topology

      Volume: 8 Issue: 2 Pages: 205-248

    • DOI

      10.4171/qt/89

    • Related Report
      2017 Research-status Report
    • Peer Reviewed / Int'l Joint Research
  • [Journal Article] Hecke-type formulas for families of unified Witten-Reshetikhin-Turaev invariants2017

    • Author(s)
      K. Hikami and J. Lovejoy
    • Journal Title

      Communications in Number Theory and Physics

      Volume: 11 Issue: 2 Pages: 249-272

    • DOI

      10.4310/cntp.2017.v11.n2.a1

    • Related Report
      2017 Research-status Report
    • Peer Reviewed / Int'l Joint Research
  • [Presentation] モックテータ関数2021

    • Author(s)
      樋上和弘
    • Organizer
      新春特別講義「ラマヌジャンと宇宙」(数学協会,東京大学素粒子物理国際研究センター,四日市大学関孝和数学研究所 主催)
    • Related Report
      2020 Annual Research Report
  • [Presentation] DAHA and skein algebra on surfaces2020

    • Author(s)
      K. Hikami
    • Organizer
      Zoom Cluster online seminar organized by Michigan State University
    • Related Report
      2020 Annual Research Report
  • [Presentation] Braid group and cluster algebra2020

    • Author(s)
      K. Hikami
    • Organizer
      GeMAT online seminar, organized by Simon Stoilow Institute of Mathematics of the Romanian Academy
    • Related Report
      2020 Annual Research Report
  • [Presentation] Introduction to the volume conjecture for knots2019

    • Author(s)
      H. Murakami
    • Organizer
      Frontiers in Mathematical Science Research Workshop - Joint workshop with Tohoku University, Jappan -, Shanghai University, China
    • Related Report
      2019 Research-status Report
    • Int'l Joint Research / Invited
  • [Presentation] DAHA and skein algebra of surfaces2019

    • Author(s)
      K. Hikami
    • Organizer
      Quiver Hecke algebra and its applications to topology, RIMS 合宿セミナー,犬山
    • Related Report
      2019 Research-status Report
    • Invited
  • [Presentation] ファットグラフによる RNA の擬ノット構造に関する モデル2019

    • Author(s)
      藤 博之
    • Organizer
      総研大-理研 iTHEMS 連携ワークショップ「遺伝と数理」
    • Related Report
      2019 Research-status Report
    • Invited
  • [Presentation] RNA を表現するファットグラフモデルと行列模型2019

    • Author(s)
      藤 博之
    • Organizer
      名古屋大学多元数理科学研究科談話会
    • Related Report
      2019 Research-status Report
    • Invited
  • [Presentation] 位相的場の理論に由来する3次元多様体の不変量(MOOとWRT)2018

    • Author(s)
      村上 斉
    • Organizer
      Summer School 数理物理 2018(位相的場の量子論)
    • Related Report
      2018 Research-status Report
    • Invited
  • [Presentation] The volume conjecture for cable knots2018

    • Author(s)
      Hitoshi Murakami
    • Organizer
      Volume Conjecture in Tokyo
    • Related Report
      2018 Research-status Report
    • Int'l Joint Research / Invited
  • [Presentation] An Introduction to the Volume Conjecture and its generalizations, I, II, and III2018

    • Author(s)
      Hitoshi Murakami
    • Organizer
      Workshop on Volume Conjecture and related topics in Knot Theory
    • Related Report
      2018 Research-status Report
    • Int'l Joint Research / Invited
  • [Presentation] Volume conjecture for knots2018

    • Author(s)
      Hitoshi Murakami
    • Organizer
      QUANTUM SYMMETRIES AND INTEGRABLE SYSTEMS
    • Related Report
      2018 Research-status Report
    • Int'l Joint Research / Invited
  • [Presentation] On Kauffman bracket skein algebra and DAHA2018

    • Author(s)
      Kazuhiro Hikami
    • Organizer
      Volume Conjecture in Tokyo
    • Related Report
      2018 Research-status Report
    • Int'l Joint Research / Invited
  • [Presentation] Reconstructing GKZ via topological recursion2018

    • Author(s)
      Hiroyuki Fuji
    • Organizer
      Physics Seminar, Korea Institute of Advanced Study
    • Related Report
      2018 Research-status Report
    • Invited
  • [Presentation] Quantum invariants for knots/3-manifolds and modular forms2017

    • Author(s)
      K. Hikami
    • Organizer
      Trends in Modular Forms
    • Related Report
      2017 Research-status Report
    • Int'l Joint Research / Invited
  • [Presentation] Quantum modular forms I, II2017

    • Author(s)
      K. Hikami
    • Organizer
      Indefinite Theta Functions and Applications in Physics & Geometry
    • Related Report
      2017 Research-status Report
    • Int'l Joint Research / Invited
  • [Book] 結び目理論入門(上)2019

    • Author(s)
      村上 斉
    • Total Pages
      342
    • Publisher
      岩波書店
    • ISBN
      9784000298261
    • Related Report
      2019 Research-status Report
  • [Book] Volume conjecture for knots2018

    • Author(s)
      Murakami, Hitoshi and Yokota, Yoshiyuki.
    • Total Pages
      132
    • Publisher
      Springer
    • ISBN
      9811311498
    • Related Report
      2018 Research-status Report
  • [Funded Workshop] Modular Forms and Quantum Knot Invariants2017

    • Related Report
      2017 Research-status Report

URL: 

Published: 2017-04-28   Modified: 2022-01-27  

Information User Guide FAQ News Terms of Use Attribution of KAKENHI

Powered by NII kakenhi