• Search Research Projects
  • Search Researchers
  • How to Use
  1. Back to previous page

Development and Evolution of Low-dimensional Topology

Research Project

Project/Area Number 17K05249
Research Category

Grant-in-Aid for Scientific Research (C)

Allocation TypeMulti-year Fund
Section一般
Research Field Geometry
Research InstitutionNara Women's University

Principal Investigator

Kobayashi Tsuyoshi  奈良女子大学, 自然科学系, 教授 (00186751)

Project Period (FY) 2017-04-01 – 2021-03-31
Project Status Completed (Fiscal Year 2020)
Budget Amount *help
¥3,380,000 (Direct Cost: ¥2,600,000、Indirect Cost: ¥780,000)
Fiscal Year 2020: ¥910,000 (Direct Cost: ¥700,000、Indirect Cost: ¥210,000)
Fiscal Year 2019: ¥780,000 (Direct Cost: ¥600,000、Indirect Cost: ¥180,000)
Fiscal Year 2018: ¥780,000 (Direct Cost: ¥600,000、Indirect Cost: ¥180,000)
Fiscal Year 2017: ¥910,000 (Direct Cost: ¥700,000、Indirect Cost: ¥210,000)
KeywordsHeegaard 分解 / 三次元多様体 / 結び目 / 絡み目 / 橋分解 / 折り紙 / データ解析 / Heegaard分解 / Hempel距離 / 自然言語処理 / 球面曲線 / 安定校点数 / 機械学習 / ニューラルネットワーク / 安定交点数 / 結び目・絡み目 / 平面曲線 / 幾何学 / 位相的データ解析
Outline of Final Research Achievements

For Purpose 1), we gave a necessary and sufficient condition for existing keen Heegaard splitting. For Purpose 2), we studied the structure of the complex obtained from the set of the spherical curves. We gave several results that give estimations of simplicial distances between vertices. Particularly we could give a complete description of the subcomplex consisting of the vertices arising from the spherical curves with at most eight double points. We defined a new invariant called “stable double point number” for a pair of spherical curves, and by making use of it we showed that there is a spherical curve that is transformed to a trivial spherical curve by a sequence of RI or RIII moves such that the number of the double points has to be raised by 2 during the process of the deformation.
For Purpose 3), we proposed a method for producing flat foldable origamis. We studied about neural networks for targeting to originating new research field in topology.

Academic Significance and Societal Importance of the Research Achievements

この研究によりHeegaard分解に関する新しい視点が導入された.その成果はもちろんのこと,研究にあたって,様々な具体例をつくるのに必要な技巧を提供でき,これからの大きな成果が期待できる.結び目・絡み目の橋表示という,古典的な研究対象にその基本的な部分で研究すべき領域が明らかになった.これからの研究を進める上での方向性を明らかにすることができた.低次元トポロジーに関してはパーシステントホモロジーの理論等実生活に結びついた応用が発見されている.本研究で低次元トポロジーの様々な成果を実用的に結び付けることを意識した研究ができた.特にその展開の可能性は大きいと考える.

Report

(5 results)
  • 2020 Annual Research Report   Final Research Report ( PDF )
  • 2019 Research-status Report
  • 2018 Research-status Report
  • 2017 Research-status Report
  • Research Products

    (14 results)

All 2020 2019 2018 2017 Other

All Journal Article (5 results) (of which Int'l Joint Research: 2 results,  Peer Reviewed: 5 results,  Open Access: 1 results) Presentation (5 results) (of which Int'l Joint Research: 1 results,  Invited: 3 results) Remarks (4 results)

  • [Journal Article] Stable Double Point Numbers of Pairs of Spherical Curves2019

    • Author(s)
      Sumika Kobayashi, Tsuyoshi Kobayashi
    • Journal Title

      JP Journal of Geometry and Topology

      Volume: 22 Issue: 2 Pages: 129-163

    • DOI

      10.17654/gt022020129

    • NAID

      120006783777

    • Related Report
      2019 Research-status Report
    • Peer Reviewed
  • [Journal Article] Similarity structure on 2-dimensional torus and flat origami2019

    • Author(s)
      Miki Irii, Tsuyoshi Kobayashi, and Hiroko Murai
    • Journal Title

      JP Jour. of Geometry and Topology

      Volume: 22 Issue: 1 Pages: 45-63

    • DOI

      10.17654/gt022010045

    • Related Report
      2018 Research-status Report
    • Peer Reviewed
  • [Journal Article] On keen Heegaard splittings2018

    • Author(s)
      Ayako Ido, Yeonhee Jang, Tsuyoshi Kobayashi
    • Journal Title

      Adv. Stud. Pure Math.

      Volume: 78 Pages: 293-311

    • DOI

      10.2969/aspm/07810293

    • Related Report
      2018 Research-status Report
    • Peer Reviewed / Int'l Joint Research
  • [Journal Article] A distance on the equivalence classes of spherical curves generated by deformations of type RI2018

    • Author(s)
      Yukari Funakoshi, Megumi Hashizume, Noboru Ito, Tsuyoshi Kobayashi, and Hiroko Murai
    • Journal Title

      Jour. Knot Theory and its Ramifications

      Volume: 27 Issue: 12 Pages: 1850066-1850066

    • DOI

      10.1142/s0218216518500669

    • Related Report
      2018 Research-status Report
    • Peer Reviewed
  • [Journal Article] The growth rate of the tunnel number of m-small knots2018

    • Author(s)
      Tsuyoshi Kobayashi, and Yo’av Rieck
    • Journal Title

      Pacific Journal of Mathematics

      Volume: 296 Issue: 1 Pages: 57-101

    • DOI

      10.2140/pjm.2018.295.57

    • Related Report
      2017 Research-status Report
    • Peer Reviewed / Open Access / Int'l Joint Research
  • [Presentation] A construction of flat-foldable origami via similarity structure of 2-dimensional torus2020

    • Author(s)
      小林毅、村井紘子
    • Organizer
      Mathematics of quasiperiodic systems and related topics
    • Related Report
      2020 Annual Research Report
    • Int'l Joint Research / Invited
  • [Presentation] サピエンス全史的視点から見たSociety 5.0の意義とポアンカレ埋め込みを用いた会話分析の紹介2019

    • Author(s)
      小林毅
    • Organizer
      奈良女子大学人間文化研究科複合現象科学専攻数学・物理学・情報科学の研究交流シンポジウム
    • Related Report
      2019 Research-status Report
    • Invited
  • [Presentation] 折り紙に現れる幾つかの幾何構造について2018

    • Author(s)
      小林毅
    • Organizer
      奈良女子大学トポロジーセミナー
    • Related Report
      2018 Research-status Report
  • [Presentation] 折り紙に現れる幾つかの数学構造について2017

    • Author(s)
      小林毅
    • Organizer
      トポロジーとコンピュータ
    • Related Report
      2017 Research-status Report
    • Invited
  • [Presentation] Complexes induced from spherical curves and distances2017

    • Author(s)
      船越紫
    • Organizer
      結び目と数学X
    • Related Report
      2017 Research-status Report
  • [Remarks]

    • URL

      https://www.facebook.com/NWUTopologyGroup

    • Related Report
      2020 Annual Research Report
  • [Remarks] 小林毅

    • URL

      http://www.nara-wu.ac.jp/math/personal/tsuyoshi/index-j.htm

    • Related Report
      2019 Research-status Report 2018 Research-status Report 2017 Research-status Report
  • [Remarks] NWUトポロジーグループ

    • URL

      https://www.facebook.com/NWUTopologyGroup/

    • Related Report
      2019 Research-status Report 2017 Research-status Report
  • [Remarks] Nwuトポロジーグループ

    • URL

      https://www.facebook.com/NWUTopologyGroup/

    • Related Report
      2018 Research-status Report

URL: 

Published: 2017-04-28   Modified: 2022-01-27  

Information User Guide FAQ News Terms of Use Attribution of KAKENHI

Powered by NII kakenhi