• Search Research Projects
  • Search Researchers
  • How to Use
  1. Back to previous page

Construction of polynomial invariants for knotoids

Research Project

Project/Area Number 17K05255
Research Category

Grant-in-Aid for Scientific Research (C)

Allocation TypeMulti-year Fund
Section一般
Research Field Geometry
Research InstitutionYamaguchi University

Principal Investigator

Miyazawa Yasuyuki  山口大学, 大学院創成科学研究科, 教授 (60263761)

Project Period (FY) 2017-04-01 – 2024-03-31
Project Status Completed (Fiscal Year 2023)
Budget Amount *help
¥2,600,000 (Direct Cost: ¥2,000,000、Indirect Cost: ¥600,000)
Fiscal Year 2020: ¥650,000 (Direct Cost: ¥500,000、Indirect Cost: ¥150,000)
Fiscal Year 2019: ¥650,000 (Direct Cost: ¥500,000、Indirect Cost: ¥150,000)
Fiscal Year 2018: ¥520,000 (Direct Cost: ¥400,000、Indirect Cost: ¥120,000)
Fiscal Year 2017: ¥780,000 (Direct Cost: ¥600,000、Indirect Cost: ¥180,000)
Keywordsknotoid / 結び目 / 結び目理論 / 多項式不変量 / 不変量 / HOMFLY多項式 / enhanced bracket 多項式
Outline of Final Research Achievements

The principal investigator studied "knotoids" which are represented by "open" knot diagrams in a surface and successfully constructed the Jones polynomial, the HOMFLY polynomial and the Kauffman polynomial for knotoids, which correspond to the three famous polynomial invariants in knot theory.

Academic Significance and Societal Importance of the Research Achievements

開発されたknotoidの多項式不変量はknotoidの分類のみならず特質の解明に役立つ。また,結び目理論への応用やその形状と深く関わる他分野,特に,DNA結び目と繋がる生物分野や高分子化合物を対象とする物理・化学分野の諸問題について解決への寄与が期待できる。さらには,その先に続く工学的・農学的分野の応用へと波及し,我々の実生活に好影響を与えるのではないかと想像される・

Report

(8 results)
  • 2023 Annual Research Report   Final Research Report ( PDF )
  • 2022 Research-status Report
  • 2021 Research-status Report
  • 2020 Research-status Report
  • 2019 Research-status Report
  • 2018 Research-status Report
  • 2017 Research-status Report
  • Research Products

    (11 results)

All 2023 2021 2020 2019 2018

All Journal Article (5 results) (of which Peer Reviewed: 5 results,  Open Access: 1 results) Presentation (6 results) (of which Invited: 1 results)

  • [Journal Article] A polynomial invariant of Kauffman type for knotoids2023

    • Author(s)
      Yasuyuki Miyazawa
    • Journal Title

      Journal of Knot Theory and Its Ramifications

      Volume: 32 Issue: 09 Pages: 2350050-2350050

    • DOI

      10.1142/s0218216523500505

    • Related Report
      2023 Annual Research Report
    • Peer Reviewed
  • [Journal Article] A polynomial invariant for knotoids2021

    • Author(s)
      Yasuyuki Miyazawa
    • Journal Title

      Osaka Journal of Mathematics

      Volume: 58

    • NAID

      120007046102

    • Related Report
      2021 Research-status Report
    • Peer Reviewed / Open Access
  • [Journal Article] An oriented knotoid diagram has no characteristic states2021

    • Author(s)
      Yasuyuki Miyazawa
    • Journal Title

      Kobe Journal of Mathematics

      Volume: 38

    • Related Report
      2021 Research-status Report
    • Peer Reviewed
  • [Journal Article] An enhanced bracket polynomial for knotoids2019

    • Author(s)
      Yasuyuki Miyazawa
    • Journal Title

      Journal of Knot Theory and Its Ramifications

      Volume: 28 Issue: 10 Pages: 1950061-1950061

    • DOI

      10.1142/s0218216519500615

    • Related Report
      2019 Research-status Report
    • Peer Reviewed
  • [Journal Article] Links with trivial 𝑄-polynomial2019

    • Author(s)
      Yasuyuki Miyazawa
    • Journal Title

      Journal of the Mathematical Society of Japan

      Volume: 71 Issue: 1 Pages: 19-42

    • DOI

      10.2969/jmsj/77167716

    • NAID

      130007557119

    • ISSN
      0025-5645, 1881-1167, 1881-2333
    • Related Report
      2018 Research-status Report
    • Peer Reviewed
  • [Presentation] KnotoidのKauffman型不変量2021

    • Author(s)
      宮澤 康行
    • Organizer
      東京女子大学トポロジーセミナー
    • Related Report
      2021 Research-status Report
    • Invited
  • [Presentation] A three variable representation of the HOMFLY polynomial2020

    • Author(s)
      宮澤 康行
    • Organizer
      2019年度琉球結目セミナー
    • Related Report
      2019 Research-status Report
  • [Presentation] A HOMFLY type of invariant for linkoids2019

    • Author(s)
      宮澤 康行
    • Organizer
      拡大KOOKセミナー2019
    • Related Report
      2019 Research-status Report
  • [Presentation] A polynomial invariant for knotoids2018

    • Author(s)
      宮澤 康行
    • Organizer
      研究集会「拡大KOOKセミナー2018」
    • Related Report
      2018 Research-status Report
  • [Presentation] An oriented link diagram has no singular states2018

    • Author(s)
      宮澤 康行
    • Organizer
      研究集会「2018年度琉球結び目セミナー」
    • Related Report
      2018 Research-status Report
  • [Presentation] 多項式不変量に関する最近の個人的未解決問題から2018

    • Author(s)
      宮澤 康行
    • Organizer
      2017年度琉球結び目セミナー
    • Related Report
      2017 Research-status Report

URL: 

Published: 2017-04-28   Modified: 2025-01-30  

Information User Guide FAQ News Terms of Use Attribution of KAKENHI

Powered by NII kakenhi