• Search Research Projects
  • Search Researchers
  • How to Use
  1. Back to previous page

Mathematical theory of knots with application to polymer topology

Research Project

Project/Area Number 17K05259
Research Category

Grant-in-Aid for Scientific Research (C)

Allocation TypeMulti-year Fund
Section一般
Research Field Geometry
Research InstitutionOsaka Metropolitan University (2022-2023)
Osaka City University (2017-2021)

Principal Investigator

Kanenobu Taizo  大阪公立大学, 大学院理学研究科, 特任教授 (00152819)

Project Period (FY) 2017-04-01 – 2024-03-31
Project Status Completed (Fiscal Year 2023)
Budget Amount *help
¥4,290,000 (Direct Cost: ¥3,300,000、Indirect Cost: ¥990,000)
Fiscal Year 2020: ¥1,170,000 (Direct Cost: ¥900,000、Indirect Cost: ¥270,000)
Fiscal Year 2019: ¥1,040,000 (Direct Cost: ¥800,000、Indirect Cost: ¥240,000)
Fiscal Year 2018: ¥1,040,000 (Direct Cost: ¥800,000、Indirect Cost: ¥240,000)
Fiscal Year 2017: ¥1,040,000 (Direct Cost: ¥800,000、Indirect Cost: ¥240,000)
Keywords結び目 / 絡み目 / バンド手術 / 交差交換 / H(2)移動 / 4移動 / HOMFLYPT多項式 / (2,2n)型トーラス絡み目 / リボン結び目 / 結び目群 / ねじれAlexander多項式 / 対称和 / Jones多項式 / Q多項式 / 2次元リボン結び目 / リボン結び目表示 / 分岐被覆空間 / 4移動 / ファイバー結び目 / 2重ケーブルジョーンズ多項式 / 整合的バンド手術 / 交差交換距離 / H(2)結び目解消数 / 結び目理論 / 低次元トポロジー / 高分子のトポロジー
Outline of Final Research Achievements

We studied several local moves on knots and links such as a coherent band surgery, a crossing change, an H(2)-move, and 4-move, and related topics on knot theory, keeping in mind research on DNA recombination and the topological structure of polymers. In particular, we studied the unknotting number of a knot and also the distance between two knots, which is the minimum number of the local moves needed to deform one knot to the other, where we applied knot polynomial invariants. We also attempt to create tables of unknotting numbers and distances for knots with small crossing number.

Academic Significance and Societal Importance of the Research Achievements

DNA分子は,複製,転写,組み換えという遺伝現象の核心をなす過程においてトポロジー(位相的な構造)が変化するが,それはトポイソメラーゼとよばれる酵素の働きによるものである.トポイソメラーゼとは,DNA の鎖を切断して,さらに結合するというような操作をおこなう酵素の総称である.トポイソメラーゼは環状のDNA に対して交差交換やバンド手術のような作用をすると考えられており,結び目,絡み目の局所変形の研究の成果がDNA等の高分子の研究に応用されることが期待される.

Report

(8 results)
  • 2023 Annual Research Report   Final Research Report ( PDF )
  • 2022 Research-status Report
  • 2021 Research-status Report
  • 2020 Research-status Report
  • 2019 Research-status Report
  • 2018 Research-status Report
  • 2017 Research-status Report
  • Research Products

    (35 results)

All 2023 2022 2021 2020 2019 2018 2017

All Journal Article (12 results) (of which Peer Reviewed: 11 results) Presentation (22 results) (of which Int'l Joint Research: 13 results,  Invited: 19 results) Book (1 results)

  • [Journal Article] Ribbon knots with different symmetric union presentations2023

    • Author(s)
      Kanenobu Taizo、Yoshikawa Shuhei
    • Journal Title

      Involve, a Journal of Mathematics

      Volume: 16 Issue: 1 Pages: 167-182

    • DOI

      10.2140/involve.2023.16.167

    • Related Report
      2023 Annual Research Report
    • Peer Reviewed
  • [Journal Article] Extension of Takahashi’s ribbon 2-knots with isomorphic groups2023

    • Author(s)
      Kanenobu Taizo、Sumi Toshio
    • Journal Title

      Journal of Knot Theory and Its Ramifications

      Volume: 32 Issue: 02

    • DOI

      10.1142/s021821652350013x

    • Related Report
      2023 Annual Research Report 2022 Research-status Report
    • Peer Reviewed
  • [Journal Article] 4-Move distance of knots2022

    • Author(s)
      Kanenobu Taizo、Takioka Hideo
    • Journal Title

      Journal of Knot Theory and Its Ramifications

      Volume: 31 Issue: 09

    • DOI

      10.1142/s0218216522500493

    • Related Report
      2022 Research-status Report
    • Peer Reviewed
  • [Journal Article] Classification of ribbon 2-knots of 1-fusion with length up to six2021

    • Author(s)
      Kanenobu Taizo、Takahashi Kota
    • Journal Title

      Topology and its Applications

      Volume: 301 Pages: 107521-107521

    • DOI

      10.1016/j.topol.2020.107521

    • Related Report
      2021 Research-status Report
    • Peer Reviewed
  • [Journal Article] Presentation of a ribbon 2-knot2020

    • Author(s)
      Kanenobu Taizo、Matsuda Masafumi
    • Journal Title

      Journal of Knot Theory and Its Ramifications

      Volume: 29 Issue: 07 Pages: 2050048-2050048

    • DOI

      10.1142/s0218216520500480

    • Related Report
      2020 Research-status Report
    • Peer Reviewed
  • [Journal Article] Suciu’s ribbon 2-knots with isomorphic group2020

    • Author(s)
      Kanenobu Taizo、Sumi Toshio
    • Journal Title

      Journal of Knot Theory and Its Ramifications

      Volume: 29 Issue: 07 Pages: 2050053-2050053

    • DOI

      10.1142/s0218216520500534

    • Related Report
      2020 Research-status Report
    • Peer Reviewed
  • [Journal Article] TWISTED ALEXANDER POLYNOMIAL OF A RIBBON 2-KNOT OF 1-FUSION2020

    • Author(s)
      Kanenobu Taizo、Sumi Toshio
    • Journal Title

      Osaka Journal of Mathematics

      Volume: 57 Issue: 4 Pages: 789-803

    • DOI

      10.18910/77230

    • NAID

      120006900873

    • ISSN
      00306126
    • URL

      https://ocu-omu.repo.nii.ac.jp/records/2010798

    • Related Report
      2020 Research-status Report
    • Peer Reviewed
  • [Journal Article] Classification of ribbon 2-knots with ribbon crossing number up to four2020

    • Author(s)
      Kanenobu Taizo
    • Journal Title

      数理解析研究所講究録

      Volume: 2163 Pages: 1-14

    • Related Report
      2020 Research-status Report
  • [Journal Article] Coherent band-Gordian distances between knots and links with up to seven crossings2019

    • Author(s)
      Kanenobu, Taizo, Moriuchi, Hiromasa
    • Journal Title

      Topology and its Applications

      Volume: 264 Pages: 233-250

    • DOI

      10.1016/j.topol.2019.06.020

    • Related Report
      2019 Research-status Report
    • Peer Reviewed
  • [Journal Article] Classification of ribbon 2-knots presented by virtual arcs with up to four crossings2019

    • Author(s)
      Kanenobu Taizo、Sumi Toshio
    • Journal Title

      Journal of Knot Theory and Its Ramifications

      Volume: 28 Issue: 10 Pages: 1950067-1950067

    • DOI

      10.1142/s0218216519500676

    • Related Report
      2019 Research-status Report
    • Peer Reviewed
  • [Journal Article] Classification of a family of ribbon 2-knots with trivial Alexander polynomial2018

    • Author(s)
      Kanenobu, Taizo and Sumi, Toshio
    • Journal Title

      Commun. Korean Math. Soc.

      Volume: 33 Pages: 591-604

    • Related Report
      2018 Research-status Report
    • Peer Reviewed
  • [Journal Article] Enumeration of ribbon 2-knots presented by virtual arcs with up to four crossings2017

    • Author(s)
      Kanenobu, T. and Komatsu, S.
    • Journal Title

      Journal of Knot Theory and Its Ramifications

      Volume: 16 Issue: 11 Pages: 1-42

    • DOI

      10.1142/s0218216517500420

    • URL

      https://ocu-omu.repo.nii.ac.jp/records/2016851

    • Related Report
      2017 Research-status Report
    • Peer Reviewed
  • [Presentation] Surjective homomorphisms between ribbon 2-knot groups2023

    • Author(s)
      Taizo KANENOBU
    • Organizer
      The 14th TAPU-KOOK Joint Seminar on Knots and Related Topics & The 16th Graduate Student Workshop on Mathematics
    • Related Report
      2023 Annual Research Report
    • Int'l Joint Research / Invited
  • [Presentation] Epimorphisms between ribbon 2-knot groups2023

    • Author(s)
      金信 泰造
    • Organizer
      研究集会「拡大 KOOK セミナー 2023」,
    • Related Report
      2023 Annual Research Report
  • [Presentation] Epimorphisms between ribbon 2-knot groups2023

    • Author(s)
      Taizo KANENOBU
    • Organizer
      BUAP-23, IPPICTA (Iberoamerican and Pan Pacific International Conference on Topology and its Applications)
    • Related Report
      2023 Annual Research Report
    • Int'l Joint Research / Invited
  • [Presentation] 同型な結び目群をもつ2次元リボン結び目2022

    • Author(s)
      金信 泰造
    • Organizer
      研究集会「拡大 KOOK セミナー2022」
    • Related Report
      2022 Research-status Report
    • Invited
  • [Presentation] Ribbon knots with different symmetric union presentations2022

    • Author(s)
      Taizo KANENOBU
    • Organizer
      The 2023 Winter TAPU Workshop on Knots and Related Topics
    • Related Report
      2022 Research-status Report
    • Int'l Joint Research / Invited
  • [Presentation] Polynomial invariants\\of a certain family of knots2021

    • Author(s)
      Taizo KANENOBU
    • Organizer
      The 12th TAPU-KOOK Joint Seminar on Knots and Related Topics
    • Related Report
      2021 Research-status Report
    • Int'l Joint Research / Invited
  • [Presentation] Classification of small ribbon 2-knots2020

    • Author(s)
      金信 泰造
    • Organizer
      Intelligence of Low-dimensional Topology
    • Related Report
      2020 Research-status Report
    • Int'l Joint Research / Invited
  • [Presentation] 同型な結び目群をもつ Suciu の2次元リボン結び目の分類2020

    • Author(s)
      金信 泰造
    • Organizer
      拡大 KOOK セミナー 2020
    • Related Report
      2020 Research-status Report
    • Invited
  • [Presentation] Classification of ribbon 2-knots of 1-fusion with up to six crossings2019

    • Author(s)
      金信泰造
    • Organizer
      Third Pan-Pacific International Conference on Topology and Applications
    • Related Report
      2019 Research-status Report
    • Int'l Joint Research / Invited
  • [Presentation] Classification of ribbon 2-knots of 1-fusion with length up to seven2019

    • Author(s)
      金信泰造
    • Organizer
      Knots in Tsushima 2019
    • Related Report
      2019 Research-status Report
    • Int'l Joint Research / Invited
  • [Presentation] 小さい2次元リボン結び目の分類をめぐって2019

    • Author(s)
      金信泰造
    • Organizer
      研究集会「拡大 KOOK セミナー 2019」
    • Related Report
      2019 Research-status Report
    • Invited
  • [Presentation] Twisted Alexander polynomial of a ribbon 2-knot2019

    • Author(s)
      Kanenobu, T.
    • Organizer
      The 14th East Asian Conference on Geometric Topology
    • Related Report
      2018 Research-status Report
    • Int'l Joint Research / Invited
  • [Presentation] 2次元リボン結び目のねじれアレキサンダー多項式2019

    • Author(s)
      金信泰造,角俊雄
    • Organizer
      日本数学会2019年度年会
    • Related Report
      2018 Research-status Report
  • [Presentation] Twisted Alexander polynomial of a ribbon 2-knot of 1-fusion2018

    • Author(s)
      Kanenobu, T.
    • Organizer
      The 10th KOOK-TAPU Joint Seminar on Knots and Related Topics
    • Related Report
      2018 Research-status Report
    • Int'l Joint Research / Invited
  • [Presentation] 2次元リボン結び目のねじれアレキサンダー多項式2018

    • Author(s)
      金信泰造
    • Organizer
      研究集会「拡大 KOOK セミナー 2018」
    • Related Report
      2018 Research-status Report
  • [Presentation] H(2)-unknotting numbers of prime 10-crossing knots2018

    • Author(s)
      金信泰造
    • Organizer
      瀬戸内結び目セミナー,大島商船高等専門学校
    • Related Report
      2018 Research-status Report
    • Invited
  • [Presentation] 結び目の2重ケーブル絡み目のジョーンズ多項式2018

    • Author(s)
      金信泰造
    • Organizer
      研究集会「トポロジーとコンピュータ2018」
    • Related Report
      2018 Research-status Report
    • Invited
  • [Presentation] Classification of Ribbon 2-Knots2017

    • Author(s)
      Kanenobu, T.
    • Organizer
      Self-distributive system and quandle (co)homology theory in algebra and low-dimensional topology”
    • Related Report
      2017 Research-status Report
    • Int'l Joint Research / Invited
  • [Presentation] 自明なアレキサンダー多項式をもつ 2 次元リボン結び目のある無限族の分類2017

    • Author(s)
      金信泰造
    • Organizer
      研究集会「拡大 KOOK セミナー 2017」
    • Related Report
      2017 Research-status Report
    • Invited
  • [Presentation] Coherent band-Gordian distances between knots and links2017

    • Author(s)
      Kanenobu, T.
    • Organizer
      Friday Seminar on Knot Theory
    • Related Report
      2017 Research-status Report
    • Int'l Joint Research / Invited
  • [Presentation] Coherent band-Gordian distances between knots and links with up to seven crossings2017

    • Author(s)
      Kanenobu, T.
    • Organizer
      The 2nd Pan Pacific International Conference on Topology and Applications
    • Related Report
      2017 Research-status Report
    • Int'l Joint Research / Invited
  • [Presentation] Classification of a family of ribbon 2-knots with trivial Alexander polynomial2017

    • Author(s)
      Kanenobu, T.
    • Organizer
      The 13th East Asian School of Knots and Related Topics
    • Related Report
      2017 Research-status Report
    • Int'l Joint Research / Invited
  • [Book] 結び目の数学2021

    • Author(s)
      C. アダムス、金信 泰造
    • Total Pages
      294
    • Publisher
      丸善出版
    • ISBN
      4621305956
    • Related Report
      2020 Research-status Report

URL: 

Published: 2017-04-28   Modified: 2025-01-30  

Information User Guide FAQ News Terms of Use Attribution of KAKENHI

Powered by NII kakenhi