• Search Research Projects
  • Search Researchers
  • How to Use
  1. Back to previous page

Reserarch on integrable structure of dynamical systems by geometric methods

Research Project

Project/Area Number 17K05271
Research Category

Grant-in-Aid for Scientific Research (C)

Allocation TypeMulti-year Fund
Section一般
Research Field Basic analysis
Research InstitutionTokyo University of Marine Science and Technology

Principal Investigator

Takenawa Tomoyuki  東京海洋大学, 学術研究院, 教授 (70361805)

Project Period (FY) 2017-04-01 – 2022-03-31
Project Status Completed (Fiscal Year 2021)
Budget Amount *help
¥4,160,000 (Direct Cost: ¥3,200,000、Indirect Cost: ¥960,000)
Fiscal Year 2020: ¥1,040,000 (Direct Cost: ¥800,000、Indirect Cost: ¥240,000)
Fiscal Year 2019: ¥1,040,000 (Direct Cost: ¥800,000、Indirect Cost: ¥240,000)
Fiscal Year 2018: ¥1,040,000 (Direct Cost: ¥800,000、Indirect Cost: ¥240,000)
Fiscal Year 2017: ¥1,040,000 (Direct Cost: ¥800,000、Indirect Cost: ¥240,000)
Keywordsパンルヴェ方程式 / 力学系 / 初期値空間 / 対称性 / 可積分系 / 代数幾何 / 関数方程式論 / 離散力学系
Outline of Final Research Achievements

The purpose of this study is to clarify various properties of discrete dynamical systems through actions on the geometric structure of phase spaces. As a concrete result, we found a general formula for constructing bi-rational maps from abstract actions on Picard groups, and established a method of deautonomization that preserves integrable structures. We also established a method for constructing a phase space (initial value space) in which the action is appropriately represented for higher dimensional dynamical systems. For higher dimensional dynamical systems that are not integrable, we found a way to construct algebraically stable manifolds. Furthermore, we proposed a natural solution construction method for the Quispel-Roberts-Thompson map, which is a self-isomorphic map of elliptic surfaces.

Academic Significance and Societal Importance of the Research Achievements

力学系には時間変数に関して連続的なものと離散的なものがあるが,連続のものは離散的なものの極限として得られることから,離散的なものの方がより一般的である.離散力学系の性質を調べる有力手段の一つにそれが自然に作用する初期値空間と呼ばれる多様体を構成し,その多様体の性質を調べるという方法がある.さらに多様体については代数幾何等の道具を使って性質を調べることができる.本研究はこのような方向で進めたものであり,特に高次元の場合や,可積分なときについて新たな手法を提案した.

Report

(6 results)
  • 2021 Annual Research Report   Final Research Report ( PDF )
  • 2020 Research-status Report
  • 2019 Research-status Report
  • 2018 Research-status Report
  • 2017 Research-status Report
  • Research Products

    (29 results)

All 2021 2020 2019 2018 2017 Other

All Int'l Joint Research (9 results) Journal Article (8 results) (of which Int'l Joint Research: 5 results,  Peer Reviewed: 7 results,  Open Access: 1 results) Presentation (11 results) (of which Int'l Joint Research: 6 results,  Invited: 8 results) Remarks (1 results)

  • [Int'l Joint Research] 上海大学(中国)

    • Related Report
      2021 Annual Research Report
  • [Int'l Joint Research] ルーマニア物理核工学研究所(ルーマニア)

    • Related Report
      2020 Research-status Report
  • [Int'l Joint Research] シドニー大学(オーストラリア)

    • Related Report
      2020 Research-status Report
  • [Int'l Joint Research] ルーマニア物理核工学研究所(ルーマニア)

    • Related Report
      2019 Research-status Report
  • [Int'l Joint Research] ノーザンコロラド大学(米国)

    • Related Report
      2019 Research-status Report
  • [Int'l Joint Research] ルーマニア物理核工学研究所(ルーマニア)

    • Related Report
      2018 Research-status Report
  • [Int'l Joint Research] ノーザンコロラド大学(米国)

    • Related Report
      2018 Research-status Report
  • [Int'l Joint Research] Northarn Colorado University(米国)

    • Related Report
      2017 Research-status Report
  • [Int'l Joint Research] Institute for Physics and Nuclear Eng.(Romania)

    • Related Report
      2017 Research-status Report
  • [Journal Article] Space of initial conditions for the four-dimensional Fuji-Suzuki-Tsuda system (Mathematical structures of integrable systems, its deepening and expansion)2021

    • Author(s)
      TAKENAWA, Tomoyuki
    • Journal Title

      RIMS Kokyuroku bessatsu

      Volume: B87

    • NAID

      120007167308

    • Related Report
      2021 Annual Research Report
    • Peer Reviewed / Open Access
  • [Journal Article] Space of initial conditions for the four dimensional Fuji-Suzuki-Tsuda system2021

    • Author(s)
      Tomoyuki Takenawa
    • Journal Title

      RIMS Kokyuroku Bessats

      Volume: -

    • Related Report
      2020 Research-status Report
    • Peer Reviewed
  • [Journal Article] An Algebraically Stable Variety for a Four-Dimensional Dynamical System Reduced from the Lattice Super-KdV Equation2020

    • Author(s)
      Adrian Stefan Carstea, Tomoyuki Takenawa
    • Journal Title

      Asymptotic, Algebraic and Geometric Aspects of Integrable Systems. Springer Proceedings in Mathematics & Statistics

      Volume: 338 Pages: 43-53

    • DOI

      10.1007/978-3-030-57000-2_4

    • ISBN
      9783030569990, 9783030570002
    • Related Report
      2020 Research-status Report
    • Peer Reviewed / Int'l Joint Research
  • [Journal Article] An algebraically stable variety for a four-dimensional dynamical system reduced from the lattice super-KdV equation2020

    • Author(s)
      Carstea A. S.、Takenawa T.
    • Journal Title

      Springer Proceedings in Mathematics & Statistics.

      Volume: -

    • Related Report
      2019 Research-status Report
    • Peer Reviewed / Int'l Joint Research
  • [Journal Article] Space of initial conditions and geometry of two 4-dimensional discrete Painlev? equations2019

    • Author(s)
      Carstea Adrian Stefan、Takenawa Tomoyuki
    • Journal Title

      Journal of Physics A: Mathematical and Theoretical

      Volume: 52 Issue: 27 Pages: 275201-275201

    • DOI

      10.1088/1751-8121/ab2253

    • Related Report
      2019 Research-status Report
    • Peer Reviewed / Int'l Joint Research
  • [Journal Article] Super-QRT and 4D-mappings reduced from the lattice super-KdV equation2019

    • Author(s)
      Carstea A. S.、Takenawa T.
    • Journal Title

      Journal of Mathematical Physics

      Volume: 60 Issue: 9 Pages: 093503-093503

    • DOI

      10.1063/1.5119690

    • Related Report
      2019 Research-status Report
    • Peer Reviewed / Int'l Joint Research
  • [Journal Article] On some applications of Sakai's geometric theory of discrete Painleve equations2018

    • Author(s)
      A. Dzhamay, T. Takenawa
    • Journal Title

      SIGMA. Symmetry, Integrability and Geometry. Methods and Applications

      Volume: 18, Paper No. 075

    • DOI

      10.3842/sigma.2018.075

    • Related Report
      2018 Research-status Report
  • [Journal Article] Fiber-dependent deautonomization of integrable 2D mappings and discrete Painleve equations2017

    • Author(s)
      Adrian Stefan Carstea, Anton Dzhamay, Tomoyuki Takenawa
    • Journal Title

      Journal of Physics A: Mathematical and Theoretical

      Volume: 50-405202 Issue: 40 Pages: 1-44

    • DOI

      10.1088/1751-8121/aa86c3

    • Related Report
      2017 Research-status Report
    • Peer Reviewed / Int'l Joint Research
  • [Presentation] Space of initial conditions for the four-dimensional Fuji-Suzuki-Tsuda system (Mathematical structures of integrable systems, its deepening and expansion)2021

    • Author(s)
      Xing Li, Tomoyuki Takenawa
    • Organizer
      The Twelfth IMACS International Conference on Nonlinear Evolution Equations and Wave Phenomena: Computation and Theory
    • Related Report
      2021 Annual Research Report
    • Int'l Joint Research
  • [Presentation] 高次元パンルヴェ系の初期値空間と対称性2021

    • Author(s)
      竹縄知之
    • Organizer
      日本数学会2021年度会
    • Related Report
      2020 Research-status Report
    • Invited
  • [Presentation] The space of initial conditions for some 4D Painleve systems2019

    • Author(s)
      Tomoyuki Takenawa
    • Organizer
      The Eleventh IMACS International Conference on Nonlinear Evolution Equations and Wave Phenomena: Computation and Theory
    • Related Report
      2019 Research-status Report
    • Int'l Joint Research / Invited
  • [Presentation] いくつかの4次元パンルヴェ方程式系の初期値空間2019

    • Author(s)
      竹縄知之
    • Organizer
      RIMS共同研究(公開型)「可積分系数理の深化と展開」
    • Related Report
      2019 Research-status Report
    • Invited
  • [Presentation] いくつかの4次元パンルヴェ方程式系の初期値空間2019

    • Author(s)
      竹縄 知之
    • Organizer
      日本数学会2019年度年会
    • Related Report
      2018 Research-status Report
  • [Presentation] Space of initial conditions for some 4D Painleve systems2018

    • Author(s)
      Tomoyuki Takenawa
    • Organizer
      Asymptotic, Algebraic and Geometric Aspects of Integrable Systems
    • Related Report
      2018 Research-status Report
    • Int'l Joint Research / Invited
  • [Presentation] Space of initial conditions for some 4D Painleve systems2018

    • Author(s)
      Tomoyuki Takenawa
    • Organizer
      Symmetries and Integrability of Difference Equations
    • Related Report
      2018 Research-status Report
    • Int'l Joint Research
  • [Presentation] The space of initial conditions for some 4D Painleve systems2018

    • Author(s)
      Tomoyuki Takenawa
    • Organizer
      Joint Mathematics Meetings 2018
    • Related Report
      2017 Research-status Report
    • Int'l Joint Research / Invited
  • [Presentation] 有限次元力学系に対する岡本ー坂井の初期値空間の方法について2018

    • Author(s)
      竹縄知之
    • Organizer
      紀尾井町数理セミナー
    • Related Report
      2017 Research-status Report
    • Invited
  • [Presentation] A factorization formula for rational mappings and tau functions2017

    • Author(s)
      Tomoyuki Takenawa
    • Organizer
      The XXVth International Conference on Integrable Systems and Quantum symmetries
    • Related Report
      2017 Research-status Report
    • Int'l Joint Research / Invited
  • [Presentation] いくつかの4次元パンルヴェ方程式に対する初期値空間2017

    • Author(s)
      竹縄知之
    • Organizer
      青山数理セミナー
    • Related Report
      2017 Research-status Report
    • Invited
  • [Remarks] 高次元パンルヴェ系の初期値空間と対称性(日本数学会講演資料)

    • URL

      http://www2.kaiyodai.ac.jp/~takenawa/Takenawa_sugakukai2021.pdf

    • Related Report
      2020 Research-status Report

URL: 

Published: 2017-04-28   Modified: 2023-01-30  

Information User Guide FAQ News Terms of Use Attribution of KAKENHI

Powered by NII kakenhi