• Search Research Projects
  • Search Researchers
  • How to Use
  1. Back to previous page

Approximation property for operator algebras and its application

Research Project

Project/Area Number 17K05278
Research Category

Grant-in-Aid for Scientific Research (C)

Allocation TypeMulti-year Fund
Section一般
Research Field Basic analysis
Research InstitutionOsaka Kyoiku University

Principal Investigator

Okayasu Rui  大阪教育大学, 教育学部, 准教授 (70362746)

Co-Investigator(Kenkyū-buntansha) 縄田 紀夫  大阪大学, 大学院情報科学研究科, 准教授 (90614040)
Project Period (FY) 2017-04-01 – 2024-03-31
Project Status Completed (Fiscal Year 2023)
Budget Amount *help
¥4,160,000 (Direct Cost: ¥3,200,000、Indirect Cost: ¥960,000)
Fiscal Year 2020: ¥1,040,000 (Direct Cost: ¥800,000、Indirect Cost: ¥240,000)
Fiscal Year 2019: ¥1,040,000 (Direct Cost: ¥800,000、Indirect Cost: ¥240,000)
Fiscal Year 2018: ¥1,040,000 (Direct Cost: ¥800,000、Indirect Cost: ¥240,000)
Fiscal Year 2017: ¥1,040,000 (Direct Cost: ¥800,000、Indirect Cost: ¥240,000)
Keywordsvon Neumann環 / 因子環 / von Neumann 環 / C*-環 / 自己同型写像 / 作用素環
Outline of Final Research Achievements

We studied injectivity and Haagerup approximation, which are approximation propertoes in operator algebras. The Haagerup approximation property was not defined for type III von Neumann algebras for many years, but through joint work with Tomatsu, it was generalized. Moreover, in joint work with Ozawa and Tomatsu, some problems in the Haagerup approximation property of quantum groups were also resolved.
We also gave an alternative proof that an injective factor on a Hilbert space with trivial bicentralizer is ITPFI.

Academic Significance and Societal Importance of the Research Achievements

von Neumann 環のHaagerup近似性は有限型の場合は以前から導入されたにも関わらず、一般の場合には全くの手付かずであった。しかし近年の研究によりその重要性が改めて認識されるようになり、一般的な定義の導入が期待されていた。そこで戸松氏との共同研究により、当初の予想された困難さを回避して、簡潔な定義の導入に成功した。

Report

(8 results)
  • 2023 Annual Research Report   Final Research Report ( PDF )
  • 2022 Research-status Report
  • 2021 Research-status Report
  • 2020 Research-status Report
  • 2019 Research-status Report
  • 2018 Research-status Report
  • 2017 Research-status Report
  • Research Products

    (6 results)

All 2023 2022 2021 2018 2017

All Journal Article (5 results) (of which Int'l Joint Research: 1 results,  Peer Reviewed: 5 results,  Open Access: 4 results) Presentation (1 results)

  • [Journal Article] A characterization of the Razak-Jacelon algebra2023

    • Author(s)
      Nawata Norio
    • Journal Title

      Analysis & PDE

      Volume: 16 Issue: 8 Pages: 1799-1824

    • DOI

      10.2140/apde.2023.16.1799

    • Related Report
      2023 Annual Research Report
    • Peer Reviewed / Open Access
  • [Journal Article] Equivariant Kirchberg-Phillips type absorption for the Razak-Jacelon algebra2023

    • Author(s)
      Nawata Norio
    • Journal Title

      Journal of Functional Analysis

      Volume: 285 Issue: 8 Pages: 110088-110088

    • DOI

      10.1016/j.jfa.2023.110088

    • Related Report
      2023 Annual Research Report
    • Peer Reviewed / Open Access
  • [Journal Article] A note on injectivite factors with trivial bicentralizer2022

    • Author(s)
      Rui Okayasu
    • Journal Title

      Publications of the Research Institute for Mathematical Sciences

      Volume: -

    • Related Report
      2021 Research-status Report
    • Peer Reviewed
  • [Journal Article] Trace scaling automorphisms of the stabilized Razak-Jacelon algebra2018

    • Author(s)
      Nawata Norio
    • Journal Title

      Proceedings of the London Mathematical Society

      Volume: 118 Issue: 3 Pages: 545-576

    • DOI

      10.1112/plms.12195

    • Related Report
      2019 Research-status Report
    • Peer Reviewed / Open Access
  • [Journal Article] Haagerup approximation property via bimodules2017

    • Author(s)
      R. Okayasu, N. Ozawa, R. Tomatsu
    • Journal Title

      Math. Scand.

      Volume: 121 Issue: 1 Pages: 75-91

    • DOI

      10.7146/math.scand.a-25970

    • NAID

      120006536945

    • Related Report
      2017 Research-status Report
    • Peer Reviewed / Open Access / Int'l Joint Research
  • [Presentation] Injectivite factors with trivial bicentralizer2021

    • Author(s)
      Rui Okayasu
    • Organizer
      日本数学会
    • Related Report
      2021 Research-status Report

URL: 

Published: 2017-04-28   Modified: 2025-01-30  

Information User Guide FAQ News Terms of Use Attribution of KAKENHI

Powered by NII kakenhi