• Search Research Projects
  • Search Researchers
  • How to Use
  1. Back to previous page

Solvability of the Gleason problem for the Bergman space and its application to analysis of integral operators

Research Project

Project/Area Number 17K05282
Research Category

Grant-in-Aid for Scientific Research (C)

Allocation TypeMulti-year Fund
Section一般
Research Field Basic analysis
Research InstitutionTokai University

Principal Investigator

Ueki Seiichiro  東海大学, 理学部, 教授 (70512408)

Project Period (FY) 2017-04-01 – 2021-03-31
Project Status Completed (Fiscal Year 2020)
Budget Amount *help
¥4,030,000 (Direct Cost: ¥3,100,000、Indirect Cost: ¥930,000)
Fiscal Year 2020: ¥780,000 (Direct Cost: ¥600,000、Indirect Cost: ¥180,000)
Fiscal Year 2019: ¥1,170,000 (Direct Cost: ¥900,000、Indirect Cost: ¥270,000)
Fiscal Year 2018: ¥1,170,000 (Direct Cost: ¥900,000、Indirect Cost: ¥270,000)
Fiscal Year 2017: ¥910,000 (Direct Cost: ¥700,000、Indirect Cost: ¥210,000)
KeywordsBergman空間 / Zygmund空間 / Privalov空間 / Fock空間 / Gleason問題 / 積分作用素 / 等距離写像 / ベルグマン空間 / Bloch空間 / チェザロ型積分作用素 / 等距離作用素 / ジグムント空間 / 荷重合成作用素 / バーグマン・フォック空間 / 合成作用素 / 解析関数空間
Outline of Final Research Achievements

The properties of Cesaro-type integral operators and related linear operators acting on analytic function spaces are characterized by using the functional-theoretic properties given by the boundary behavior in the domain of the functions and mappings constituting the operators. In order to express the conditions for the characterization, we clarify the solvability of the Gleason problem and the integral representation of its solution, and to establish the approximation method, we derive the order evaluation of the norm approximation by the dilated function and the norm evaluation inequality with the equivalence by the differential operator. The characterization of integral, multiplicative, and differential operators acting on Fock-type spaces, and the structural analysis of equidistant mappings in Privalov-type spaces were also studied.

Academic Significance and Societal Importance of the Research Achievements

解析関数空間に作用する線形作用素の性質を解析するために取られる手法は、関数空間に依存する位相解析的な同値条件に読み替えることが主流である。しかしながら、Bergman型空間に作用する積分作用素の解析では試験関数の構成が難しくこのような手法が通用しない状況が現れる。この点を克服するための新しいアプローチがBerezin型変換の解析と同値ノルムによる評価であり、これらを実現するためにGleason問題の可解性とその解の表現の応用を試みたのが本研究である。Gleason問題の応用による線形作用素の研究はこれまでに着手されていないものであるので、今後の発展が大いに期待される研究であると考える。

Report

(5 results)
  • 2020 Annual Research Report   Final Research Report ( PDF )
  • 2019 Research-status Report
  • 2018 Research-status Report
  • 2017 Research-status Report
  • Research Products

    (16 results)

All 2020 2019 2018 2017

All Journal Article (6 results) (of which Int'l Joint Research: 1 results,  Peer Reviewed: 4 results) Presentation (10 results) (of which Invited: 3 results)

  • [Journal Article] Isometries of Analytic Function Spaces with Np -Derivative2020

    • Author(s)
      Sei-Ichiro Ueki
    • Journal Title

      Integral Equations and Operator Theory

      Volume: 92 Issue: 3 Pages: 20-20

    • DOI

      10.1007/s00020-020-02578-5

    • Related Report
      2020 Annual Research Report
    • Peer Reviewed
  • [Journal Article] Mean Lipschitz conditions and growth of area integral means of functions in Bergman spaces with an admissible Bekolle weight2020

    • Author(s)
      Ajay K. Sharma, Sei-Ichiro Ueki
    • Journal Title

      Rocky Mountain Journal of Mathematics

      Volume: 50 Issue: 2

    • DOI

      10.1216/rmj.2020.50.693

    • Related Report
      2020 Annual Research Report
    • Peer Reviewed / Int'l Joint Research
  • [Journal Article] Characterizations of admissible weighted Bergman spaces on the unit ball2020

    • Author(s)
      Sei-Ichiro Ueki
    • Journal Title

      Computational Methods and Function Theory

      Volume: 20 Issue: 1 Pages: 95-109

    • DOI

      10.1007/s40315-020-00299-9

    • Related Report
      2019 Research-status Report
    • Peer Reviewed
  • [Journal Article] Multiplicative linear functional on the Zygmund F-algebra2019

    • Author(s)
      植木誠一郎
    • Journal Title

      京都大学数理解析研究所講究録

      Volume: 2125 Pages: 68-71

    • Related Report
      2019 Research-status Report
  • [Journal Article] Isometries of the Zygmund F-algebra2019

    • Author(s)
      植木誠一郎
    • Journal Title

      京都大学数理解析研究所講究録

      Volume: 2118 Pages: 26-32

    • Related Report
      2019 Research-status Report
  • [Journal Article] Characterizations and Gleason's problem for the Zygmund space on the unit ball2017

    • Author(s)
      Sei-Ichiro Ueki
    • Journal Title

      Indagationes Mathematicae

      Volume: 28 Issue: 5 Pages: 962-975

    • DOI

      10.1016/j.indag.2017.06.014

    • Related Report
      2017 Research-status Report
    • Peer Reviewed
  • [Presentation] Isometries of the Novinger-Oberlin type Privalov space2020

    • Author(s)
      植木誠一郎
    • Organizer
      2020日本数学会 秋季総合分科会
    • Related Report
      2020 Annual Research Report
  • [Presentation] Novinger-Oberlin型Privalov空間の等距離写像2020

    • Author(s)
      植木誠一郎
    • Organizer
      様々な関数空間上の等距離写像の研究
    • Related Report
      2019 Research-status Report
  • [Presentation] ハーディ空間に対する補間数列2019

    • Author(s)
      植木誠一郎
    • Organizer
      Real, Complex and Functional Analysis Seminar
    • Related Report
      2019 Research-status Report
  • [Presentation] Multiplicative linear functional on the Zygmund F-algebra2019

    • Author(s)
      植木誠一郎
    • Organizer
      保存問題としての等距離写像の研究とその周辺 RIMS共同研究(公開型)
    • Related Report
      2018 Research-status Report
  • [Presentation] Zygmund F-algebra上の乗法的線形汎関数2019

    • Author(s)
      植木誠一郎
    • Organizer
      第58回関東作用素論セミナー
    • Related Report
      2018 Research-status Report
  • [Presentation] Isometries of Zygmund F-algebra2018

    • Author(s)
      植木誠一郎
    • Organizer
      University of Jammu 談話会
    • Related Report
      2018 Research-status Report
    • Invited
  • [Presentation] Isometries of Zygmund F-algebra2018

    • Author(s)
      植木誠一郎
    • Organizer
      National Conference on Recent Advances in Mathematics RAM-2018
    • Related Report
      2018 Research-status Report
    • Invited
  • [Presentation] Mean Lipschitz conditions and growth of area integral means of functions in Bergman spaces2018

    • Author(s)
      植木誠一郎
    • Organizer
      Conference on Function Algebra 2018
    • Related Report
      2018 Research-status Report
  • [Presentation] Isometries of the Zygmund F-algebra2018

    • Author(s)
      植木誠一郎
    • Organizer
      等距離写像理論と保存問題の多様な視点からの研究
    • Related Report
      2017 Research-status Report
  • [Presentation] Fock型空間に対するequivalent normと積分作用素解析への応用2017

    • Author(s)
      植木誠一郎
    • Organizer
      作用素環・作用素環論研究集会
    • Related Report
      2017 Research-status Report
    • Invited

URL: 

Published: 2017-04-28   Modified: 2022-01-27  

Information User Guide FAQ News Terms of Use Attribution of KAKENHI

Powered by NII kakenhi