The study of permanent properties for inclusions of C*-algebras and its application to the complex system
Project/Area Number |
17K05285
|
Research Category |
Grant-in-Aid for Scientific Research (C)
|
Allocation Type | Multi-year Fund |
Section | 一般 |
Research Field |
Basic analysis
|
Research Institution | Ritsumeikan University |
Principal Investigator |
|
Project Period (FY) |
2017-04-01 – 2020-03-31
|
Project Status |
Completed (Fiscal Year 2019)
|
Budget Amount *help |
¥4,550,000 (Direct Cost: ¥3,500,000、Indirect Cost: ¥1,050,000)
Fiscal Year 2019: ¥1,170,000 (Direct Cost: ¥900,000、Indirect Cost: ¥270,000)
Fiscal Year 2018: ¥1,560,000 (Direct Cost: ¥1,200,000、Indirect Cost: ¥360,000)
Fiscal Year 2017: ¥1,820,000 (Direct Cost: ¥1,400,000、Indirect Cost: ¥420,000)
|
Keywords | Rokhlin property / C*-index theory / Jaing-Su absorption / Sequentially split / Operator means / Operator monotone / Schmidt rank / Completely positive maps / Jiang-Su absorption / operator means / completely positive maps / decomposable maps / quantum entanglement / norm attaining operators / operator monotone / stable rank one / Jiang-Su algebras / 作用素環 / 作用素論 |
Outline of Final Research Achievements |
We extended the tracial Rokhlin property for inclusions A ⊂ B of unital C*-algebras in the sense of Osaka and Teruya to the tracially sequentially split *-homomorphism for a *-homomorphism from A to B by using the idea by Balak and Szabo in the joint work with Hyun Ho Lee, and cleared the heredity of basic permanent properties of B to A. In the case of inclusions of nonunital C*-algebras, we finished the study of the Rokhlin property with Tamotsu Teruya.
|
Academic Significance and Societal Importance of the Research Achievements |
離散群ΓからC*-環Aへの作用αから生成されるC*-力学系C*(Γ, A,α) (=B)の構造解析をBからAへの非可換条件付き期待値を用いて解析をするという大坂-照屋のアイデアを拡張したBalack-Szaboのsequentially split *-homomorphismをさらに拡張したLee-大坂の手法は、今後様々なC*-力学系の解析に役立つと期待できる。
|
Report
(4 results)
Research Products
(38 results)