• Search Research Projects
  • Search Researchers
  • How to Use
  1. Back to previous page

Comprehensive Research of Operator Functions

Research Project

Project/Area Number 17K05286
Research Category

Grant-in-Aid for Scientific Research (C)

Allocation TypeMulti-year Fund
Section一般
Research Field Basic analysis
Research InstitutionRitsumeikan University

Principal Investigator

Uchiyama Mitsuru  立命館大学, 総合科学技術研究機構, プロジェクト研究員 (60112273)

Project Period (FY) 2017-04-01 – 2024-03-31
Project Status Completed (Fiscal Year 2023)
Budget Amount *help
¥4,550,000 (Direct Cost: ¥3,500,000、Indirect Cost: ¥1,050,000)
Fiscal Year 2020: ¥1,040,000 (Direct Cost: ¥800,000、Indirect Cost: ¥240,000)
Fiscal Year 2019: ¥910,000 (Direct Cost: ¥700,000、Indirect Cost: ¥210,000)
Fiscal Year 2018: ¥1,170,000 (Direct Cost: ¥900,000、Indirect Cost: ¥270,000)
Fiscal Year 2017: ¥1,430,000 (Direct Cost: ¥1,100,000、Indirect Cost: ¥330,000)
KeywordsOperator function / Operator monotone / Operator convex function / Matrix mean / Matrix geometric mean / Matrix symmetric mean / Loewner's theorem / 作用素関数 / 作用素単調関数 / 行列平均 / 行列幾何平均 / 2次行列方程式 / 行列2次方程式 / 作用素平均 / 作用素凸関数 / 強作用素凸関数 / 正値線形写像 / Choi 予想 / 作用素環 / Operator functions / Pick functions
Outline of Final Research Achievements

Let f(t) be a continuous function defined on an interval J, and s a point in J. Then we showed that f(t) is operator monotone if and only if its Loewner kernel function is strongly operator convex. It is well-known that if f(t) is defined on the real positive axis, then f(t) is operator monotone if and only if f(t) is operator concave. However, that does not hold for a function defined on a finite interval. We got a necessary and sufficient condition for f(t), whose domain may be finite, to be operator monotone.
By using the concept of geometric mean, we showed that the relationship between roots and coefficients of a scalar quadratic equation holds for an operator Quadratic equation as well. We established operator means of multivariable operators on an infinite dimensional space.

Academic Significance and Societal Importance of the Research Achievements

我々が示した定理「f(t) が作用素単調関数であるための必要十分条件はLoewner 関数が作用素強凸である」は逐次的に作用素単調関数を構成できることを示している。具体的な関数が作用素単調であることを確かめることは平易ではないことを考慮すれば、この結果は重要であると思われる。
作用素の2次方程式の根と係数の関係を解明したが、この結果が高次方程式の研究につながることが期待される。作用素の平均理論が空間の次元に関係なく確立されたので、幅広い分野で応用されることを期待している。

Report

(8 results)
  • 2023 Annual Research Report   Final Research Report ( PDF )
  • 2022 Research-status Report
  • 2021 Research-status Report
  • 2020 Research-status Report
  • 2019 Research-status Report
  • 2018 Research-status Report
  • 2017 Research-status Report
  • Research Products

    (21 results)

All 2024 2023 2022 2021 2020 2019 2018 2017 Other

All Int'l Joint Research (3 results) Journal Article (8 results) (of which Int'l Joint Research: 1 results,  Peer Reviewed: 8 results) Presentation (9 results) (of which Int'l Joint Research: 1 results,  Invited: 1 results) Book (1 results)

  • [Int'l Joint Research] Purdue University(米国)

    • Related Report
      2018 Research-status Report
  • [Int'l Joint Research] Univ. Franche-Comte(フランス)

    • Related Report
      2018 Research-status Report
  • [Int'l Joint Research] Purdue University(米国)

    • Related Report
      2017 Research-status Report
  • [Journal Article] Symmetric operator means2024

    • Author(s)
      Mitsuru Uchiyama
    • Journal Title

      Acta Sci. Math. (Szeged)

      Volume: -

    • Related Report
      2023 Annual Research Report
    • Peer Reviewed
  • [Journal Article] Symmetric matrix means2023

    • Author(s)
      Mitsuru Uchiyama
    • Journal Title

      Linear Algebra and its Applications

      Volume: 656 Pages: 112130-112130

    • DOI

      10.1016/j.laa.2022.09.023

    • Related Report
      2022 Research-status Report
    • Peer Reviewed
  • [Journal Article] B. Simon: Loewner's Theorem on Monotone Matrix Functions2022

    • Author(s)
      内山 充
    • Journal Title

      数学 (日本数学会) 岩波書店発売

      Volume: 74

    • Related Report
      2021 Research-status Report
    • Peer Reviewed
  • [Journal Article] Operator means and matrix quadratic equations2021

    • Author(s)
      M. Uchiyama
    • Journal Title

      Linear Algebra and its Applications

      Volume: 609 Pages: 163-175

    • DOI

      10.1016/j.laa.2020.09.004

    • Related Report
      2020 Research-status Report
    • Peer Reviewed
  • [Journal Article] Operator functions and the operator harmonic mean2020

    • Author(s)
      M. Uchiyama
    • Journal Title

      Proceeding of the American Math. Soc.

      Volume: 148 Issue: 2 Pages: 797-809

    • DOI

      10.1090/proc/14753

    • Related Report
      2019 Research-status Report
    • Peer Reviewed
  • [Journal Article] Some results on matrix means2020

    • Author(s)
      M. Uchiyama
    • Journal Title

      Advances in Operator Theory

      Volume: - Issue: 3 Pages: 728-733

    • DOI

      10.1007/s43036-019-00036-7

    • Related Report
      2019 Research-status Report
    • Peer Reviewed
  • [Journal Article] Some results on strongly operator convex functions and operator monotone functions2018

    • Author(s)
      L. G. Brown, M. Uchiyama
    • Journal Title

      Linear Algebra and its Applications

      Volume: 553 Pages: 238-251

    • DOI

      10.1016/j.laa.2018.05.005

    • Related Report
      2018 Research-status Report
    • Peer Reviewed / Int'l Joint Research
  • [Journal Article] Positive linear maps on C*-algebras and rigid functions2017

    • Author(s)
      Mitsuru Uchiyama
    • Journal Title

      Journal of Mathematical Analysis and Applications

      Volume: 449 Issue: 2 Pages: 1472-1478

    • DOI

      10.1016/j.jmaa.2016.12.069

    • Related Report
      2017 Research-status Report
    • Peer Reviewed
  • [Presentation] Symmetric matrix means2022

    • Author(s)
      内山 充
    • Organizer
      日本数学会秋季総合分科会
    • Related Report
      2022 Research-status Report
  • [Presentation] Operator means and matrix quadratic equations.2022

    • Author(s)
      内山 充
    • Organizer
      日本数学会(埼玉大学)
    • Related Report
      2021 Research-status Report
  • [Presentation] 作用素平均と行列2次方程式2022

    • Author(s)
      内山 充
    • Organizer
      作用素論-作用素環論研究集会(九州大学)
    • Related Report
      2021 Research-status Report
  • [Presentation] Operator functions and operator means2020

    • Author(s)
      内山 充
    • Organizer
      日本数学会
    • Related Report
      2019 Research-status Report
  • [Presentation] Matrix functions and Matrix means2019

    • Author(s)
      内山 充
    • Organizer
      京大数理研共同研究集会「順序を用いた作用素の構造研究と関連する話題」
    • Related Report
      2019 Research-status Report
  • [Presentation] Matrix functions and matrix order2019

    • Author(s)
      内山 充
    • Organizer
      実解析学シンポジウム2019
    • Related Report
      2019 Research-status Report
  • [Presentation] Strongly operator convex functions2018

    • Author(s)
      Mitsuru Uchiyama, L.G. Brown
    • Organizer
      日本数学会
    • Related Report
      2018 Research-status Report
  • [Presentation] Strongly operator convex functions2018

    • Author(s)
      内山 充
    • Organizer
      作用素論・作用素環論研究集会
    • Related Report
      2018 Research-status Report
    • Invited
  • [Presentation] Positive linear maps on C*-algebras- Choi's conjecture-2017

    • Author(s)
      Mitsuru Uchiyama
    • Organizer
      Positivity IX
    • Related Report
      2017 Research-status Report
    • Int'l Joint Research
  • [Book] Geometric Mean and Matrix Quadratic Equations (Mathematics Online First Collections)2023

    • Author(s)
      Mitsuru Uchiyama (Editor:M. S. Moslehian)
    • Total Pages
      30
    • Publisher
      Springer
    • ISBN
      9783031253850
    • Related Report
      2023 Annual Research Report

URL: 

Published: 2017-04-28   Modified: 2025-01-30  

Information User Guide FAQ News Terms of Use Attribution of KAKENHI

Powered by NII kakenhi