• Search Research Projects
  • Search Researchers
  • How to Use
  1. Back to previous page

the study of gap phenomenon for proper holomorphic mappings

Research Project

Project/Area Number 17K05308
Research Category

Grant-in-Aid for Scientific Research (C)

Allocation TypeMulti-year Fund
Section一般
Research Field Basic analysis
Research InstitutionNagano National College of Technology

Principal Investigator

HAYASHIMOTO Atsushi  長野工業高等専門学校, リベラルアーツ教育院, 教授 (90342493)

Project Period (FY) 2017-04-01 – 2024-03-31
Project Status Completed (Fiscal Year 2023)
Budget Amount *help
¥4,550,000 (Direct Cost: ¥3,500,000、Indirect Cost: ¥1,050,000)
Fiscal Year 2021: ¥910,000 (Direct Cost: ¥700,000、Indirect Cost: ¥210,000)
Fiscal Year 2020: ¥910,000 (Direct Cost: ¥700,000、Indirect Cost: ¥210,000)
Fiscal Year 2019: ¥910,000 (Direct Cost: ¥700,000、Indirect Cost: ¥210,000)
Fiscal Year 2018: ¥910,000 (Direct Cost: ¥700,000、Indirect Cost: ¥210,000)
Fiscal Year 2017: ¥910,000 (Direct Cost: ¥700,000、Indirect Cost: ¥210,000)
Keywords固有正則写像 / gap 現象 / 複素擬楕円体 / gap現象 / Gap定理 / 古典型領域 / Cartan-Hartogs領域 / Hua領域 / Cartan-Hartogs領域 / 一般複素擬楕円 / CRベクトル場 / gap定理 / 関数論 / 解析学 / 幾何学
Outline of Final Research Achievements

The goal of this research is that to study the gap phenomennon for domains not equivalent to balls and to study the phenomenon by geometric approach. The problem considered is "Assume that there exists a proper holomorphic mapping between generalized pseudoellipsoids of different dimensions. Then can we classify such mappings depending on the dimensions? Does the gap phenomenon occure? "Our theorem is the following. "Assume that the dimensions in the 'blocks' in the defining functions satisfy certain conditions. then the proper holomorphic mappings between generalized pseudoellipsoids is, up to automorphisms of the both domians, identity mapping plus zero mapping."

Academic Significance and Societal Importance of the Research Achievements

・与えられた領域の間の正則写像を分類することは、以前からの大きな課題であった。領域に条件を付けたり、写像に条件を付けて分類することが行われてきた。例えば、「同じ次元球の間の固有正則写像は自己同型写像である。」「同じ次元の擬楕円体の間の固有正則写像は自己同型群の差を省くと恒等写像しかない」などである。この科研費による研究では、次元の異なる複素擬楕円体の間の固有正則写像の分類を行った。これは強擬凸領域の代表例である球の場合に成り立つ定理を、擬凸の場合に拡張したものになっている。擬凸領域に対するこのような定理はこれが最初のものと思われる。

Report

(8 results)
  • 2023 Annual Research Report   Final Research Report ( PDF )
  • 2022 Research-status Report
  • 2021 Research-status Report
  • 2020 Research-status Report
  • 2019 Research-status Report
  • 2018 Research-status Report
  • 2017 Research-status Report
  • Research Products

    (4 results)

All 2021 2020 2019

All Journal Article (1 results) (of which Peer Reviewed: 1 results,  Open Access: 1 results) Presentation (3 results) (of which Invited: 1 results)

  • [Journal Article] A classification of proper holomorphic mappings between generalized pseudoellipsoids of different dimensions2020

    • Author(s)
      Hayashimoto Atsushi
    • Journal Title

      Complex variables and Elliptic equations

      Volume: 65 Pages: 423-439

    • Related Report
      2019 Research-status Report
    • Peer Reviewed / Open Access
  • [Presentation] 固有正則写像とCR写像に関する様々な決定問題2021

    • Author(s)
      林本厚志
    • Organizer
      第64回函数論シンポジウム
    • Related Report
      2021 Research-status Report
    • Invited
  • [Presentation] Hua 領域の自己同型群と等方性群2020

    • Author(s)
      林本厚志
    • Organizer
      日本数学会年会
    • Related Report
      2019 Research-status Report
  • [Presentation] 一般複素擬楕円と固有正則写像2019

    • Author(s)
      林本厚志
    • Organizer
      日本数学会年会
    • Related Report
      2018 Research-status Report

URL: 

Published: 2017-04-28   Modified: 2025-01-30  

Information User Guide FAQ News Terms of Use Attribution of KAKENHI

Powered by NII kakenhi