• Search Research Projects
  • Search Researchers
  • How to Use
  1. Back to previous page

Research on the Moebius energy by analytic method

Research Project

Project/Area Number 17K05310
Research Category

Grant-in-Aid for Scientific Research (C)

Allocation TypeMulti-year Fund
Section一般
Research Field Mathematical analysis
Research InstitutionSaitama University

Principal Investigator

Nagasawa Takeyuki  埼玉大学, 理工学研究科, 教授 (70202223)

Project Period (FY) 2017-04-01 – 2021-03-31
Project Status Discontinued (Fiscal Year 2020)
Budget Amount *help
¥4,420,000 (Direct Cost: ¥3,400,000、Indirect Cost: ¥1,020,000)
Fiscal Year 2020: ¥1,170,000 (Direct Cost: ¥900,000、Indirect Cost: ¥270,000)
Fiscal Year 2019: ¥1,170,000 (Direct Cost: ¥900,000、Indirect Cost: ¥270,000)
Fiscal Year 2018: ¥1,040,000 (Direct Cost: ¥800,000、Indirect Cost: ¥240,000)
Fiscal Year 2017: ¥1,040,000 (Direct Cost: ¥800,000、Indirect Cost: ¥240,000)
Keywordsメビウス・エネルギー / O'Haraエネルギー / 分解エネルギー / 余弦公式 / 等周不等式 / 補間不等式 / 曲率流 / 凸化 / 変分公式 / メビウス不変性 / Kusner-Sullivan予想 / 分解定理 / 勾配流
Outline of Final Research Achievements

We investigate the Kusner-Sullivan conjecture, which says that there do not exist minimizers of the Moebius energy in any composite knot classes. To study it, we derived structure-preserving discretization of the decomposed Moebius energies, and the decomposition and the cosine formula of O'Hara energy. If the Kusner-Sullivan conjecture is correct, then the gradient flow of Moebius energy with an initial knot of composite type may blow up in a finite time. In order to observe this, we employ the degeneration of a loop of the closed plane curve under the non-local curvature flow as a simple model. As a result, we prove that if a solution exists globally in time, it develops to a closed convex curve in a finite time, and finally converges to a circle. Concerning knot energies, we found structure-preserving discretization and lower/upper bounds of decomposed Moebius energies, and decomposition and the cosine formula of O'Hara energies.

Academic Significance and Societal Importance of the Research Achievements

結び目のエネルギーは、与えられた結び目型内における標準形をエネルギー最小元で定めるためO'Haraにより導入され、今日ではO'Haraエネルギーと呼ばれている。その中のひとつがメビウス・エネルギーであり、メビウス変換によりエネルギーを変えないことが名前の由来である。メビウス不変性は幾何学的には美しい性質であるが、解析学的にはエネルギーのスケール不変性のために変分法の直接法が利用できないという困難さを生む。各結び目型内でのメビウス・エネルギーの最小元が存在するか否かは部分的解答しか得られていない。本研究は、メビウス・エネルギーの諸性質を解析学の手法で解明することを目的とした。

Report

(4 results)
  • 2020 Final Research Report ( PDF )
  • 2019 Annual Research Report
  • 2018 Research-status Report
  • 2017 Research-status Report
  • Research Products

    (33 results)

All 2020 2019 2018 2017 Other

All Int'l Joint Research (3 results) Journal Article (2 results) (of which Int'l Joint Research: 1 results,  Peer Reviewed: 2 results,  Open Access: 2 results) Presentation (23 results) (of which Int'l Joint Research: 5 results,  Invited: 13 results) Book (1 results) Remarks (2 results) Funded Workshop (2 results)

  • [Int'l Joint Research] Salzburg University(オーストリア)

    • Related Report
      2019 Annual Research Report
  • [Int'l Joint Research] Salzburg University(オーストリア)

    • Related Report
      2018 Research-status Report
  • [Int'l Joint Research] ザルツブルク大学(オーストリア)

    • Related Report
      2017 Research-status Report
  • [Journal Article] Variational formulae and estimates of O'Hara's knot energies2020

    • Author(s)
      Shoya Kawakami, Takeyuki Nagasawa
    • Journal Title

      Journal of Knot Theory and Its Ramifications

      Volume: 29 Issue: 04 Pages: 2050016-2050016

    • DOI

      10.1142/s0218216520500169

    • Related Report
      2019 Annual Research Report
    • Peer Reviewed / Open Access / Int'l Joint Research
  • [Journal Article] Interpolation inequalities between the deviation of curvature and the isoperimetric ratio with applications to geometric flows2019

    • Author(s)
      Takeyuki Nagasawa, Kohei Nakamura
    • Journal Title

      Advances in Differential Equations

      Volume: 24 Pages: 581-608

    • Related Report
      2019 Annual Research Report
    • Peer Reviewed / Open Access
  • [Presentation] Asymptotic analysis for non-local curvature flows for plane curves with general rotation number2020

    • Author(s)
      T. Nagasawa
    • Organizer
      Mini-symposium: Nonlinear Geometric Partial Differential Equations
    • Related Report
      2019 Annual Research Report
    • Int'l Joint Research / Invited
  • [Presentation] O'Haraエネルギーの変分公式の評価について2020

    • Author(s)
      川上 翔矢, 長澤 壯之
    • Organizer
      日本数学会 2020年度年会 函数方程式分科会
    • Related Report
      2019 Annual Research Report
  • [Presentation] 分解されたMoebiusエネルギーの上界・下界と連続度評価2020

    • Author(s)
      石関 彩, 長澤 壯之
    • Organizer
      日本数学会 2020年度年会 函数方程式分科会
    • Related Report
      2019 Annual Research Report
  • [Presentation] 一般回転数の平面閉曲線に対する非局所曲率流の漸近解析2020

    • Author(s)
      長澤 壯之, 中村 恒平
    • Organizer
      日本数学会 2020年度年会 函数方程式分科会
    • Related Report
      2019 Annual Research Report
  • [Presentation] 一般化されたO'Haraエネルギーに対する余弦公式2019

    • Author(s)
      長澤 壯之
    • Organizer
      第49回南大阪応用数学セミナー
    • Related Report
      2019 Annual Research Report
    • Invited
  • [Presentation] O'Haraエネルギー: 入門と最近の話題2019

    • Author(s)
      長澤 壯之
    • Organizer
      第41回発展方程式若手セミナー
    • Related Report
      2019 Annual Research Report
    • Invited
  • [Presentation] 一般回転数の平面閉曲線に対する非局所曲率流の漸近解析2019

    • Author(s)
      長澤 壯之
    • Organizer
      第15回非線型の諸問題
    • Related Report
      2019 Annual Research Report
    • Invited
  • [Presentation] 一般化されたO'Haraエネルギーに対する余弦公式2019

    • Author(s)
      長澤 壯之
    • Organizer
      日本数学会2019年度秋季総合分科会, 函数方程式分科会
    • Related Report
      2019 Annual Research Report
  • [Presentation] 解析学的手法による結び目のエネルギーへのアプローチ2019

    • Author(s)
      長澤 壯之
    • Organizer
      研究集会「微分方程式の総合的研究」
    • Related Report
      2019 Annual Research Report
    • Invited
  • [Presentation] メビウス・エネルギーの構造保存離散化と分解2018

    • Author(s)
      長澤 壯之
    • Organizer
      研究集会「数学と現象in長瀞」
    • Related Report
      2018 Research-status Report
  • [Presentation] Moebiusエネルギー: 入門と最近の話題2018

    • Author(s)
      長澤 壯之
    • Organizer
      界面現象の数理・モデリング研究合宿2018
    • Related Report
      2018 Research-status Report
    • Invited
  • [Presentation] MoebiusエネルギーのMoebius不変な離散化と分解2018

    • Author(s)
      長澤 壯之
    • Organizer
      東京大学数値解析セミナー #107
    • Related Report
      2018 Research-status Report
  • [Presentation] Interpolation between the isoperimetric ratio and curvature for plane curves and an application to curvature flows with non-local terms2018

    • Author(s)
      Takeyuki Nagasawa
    • Organizer
      Viscosity Solutions and Related Topics
    • Related Report
      2018 Research-status Report
    • Int'l Joint Research / Invited
  • [Presentation] Large-time behavior of curvature flows with non-local terms for plane curves -- an application of interpolation between the isoperimetric ratio and curvature2018

    • Author(s)
      Takeyuki Nagasawa
    • Organizer
      Salzburg University Analysis Seminar
    • Related Report
      2018 Research-status Report
    • Int'l Joint Research / Invited
  • [Presentation] 一般化されたO'Haraエネルギーの分解とその帰結2018

    • Author(s)
      長澤 壯之
    • Organizer
      第16回浜松偏微分方程式研究集会
    • Related Report
      2018 Research-status Report
    • Invited
  • [Presentation] Recent topics on O'Hara's energies of knots2018

    • Author(s)
      T. Nagasawa
    • Organizer
      Saga Workshop on Partial Differential Equations
    • Related Report
      2017 Research-status Report
    • Invited
  • [Presentation] 一般化されたO'Haraエネルギーの分解について2018

    • Author(s)
      石関 彩, 長澤 壯之
    • Organizer
      日本数学会2018年度年会 函数方程式分科会
    • Related Report
      2017 Research-status Report
  • [Presentation] A Moebius invariant descretization and decomposition of the Moebius energy2017

    • Author(s)
      T. Nagasawa
    • Organizer
      Recent Topics on Energy of Knots
    • Related Report
      2017 Research-status Report
    • Int'l Joint Research
  • [Presentation] 分解されたMoebiusエネルギーのMoebius不変なエネルギー密度による別表現2017

    • Author(s)
      S. Blatt, 長澤 壯之
    • Organizer
      日本数学会2017年度秋季総合分科会 函数方程式分科会
    • Related Report
      2017 Research-status Report
  • [Presentation] MoebiusエネルギーのMoebius不変な離散化と分解2017

    • Author(s)
      S. Blatt, 長澤 壯之
    • Organizer
      日本数学会2017年度秋季総合分科会 函数方程式分科会
    • Related Report
      2017 Research-status Report
  • [Presentation] A Moebius invariant descretization and decomposition of the Mobius energy2017

    • Author(s)
      T. Nagasawa
    • Organizer
      1st Workshop on Geometric Curvature Functionals and Discretization
    • Related Report
      2017 Research-status Report
    • Int'l Joint Research / Invited
  • [Presentation] MoebiusエネルギーのMoebius不変な離散化と分解2017

    • Author(s)
      長澤 壯之
    • Organizer
      第7回室蘭非線形解析研究会
    • Related Report
      2017 Research-status Report
    • Invited
  • [Presentation] O'Haraエネルギーの分解とその帰結2017

    • Author(s)
      長澤 壯之
    • Organizer
      第7回室蘭非線形解析研究会
    • Related Report
      2017 Research-status Report
    • Invited
  • [Book] New Directions in Geometric and Applied Knot Theory2018

    • Author(s)
      P. Reiter, S. Blatt, A. Schikorra
    • Total Pages
      288
    • Publisher
      De Gruyter
    • ISBN
      9783110571486
    • Related Report
      2018 Research-status Report
  • [Remarks] 科研費による研究成果|長澤|数学科|埼玉大学理学部

    • URL

      http://www.saitama-u.ac.jp/sci/math/lab/nagasawa/seika.html

    • Related Report
      2019 Annual Research Report
  • [Remarks]

    • URL

      http://www.rimath.saitama-u.ac.jp/lab.jp/TakeyukiNagasawa.html

    • Related Report
      2017 Research-status Report
  • [Funded Workshop] Saitama University Analysis Seminar #882018

    • Related Report
      2018 Research-status Report
  • [Funded Workshop] Recent Topics on Energy of Knots2017

    • Related Report
      2017 Research-status Report

URL: 

Published: 2017-04-28   Modified: 2022-01-27  

Information User Guide FAQ News Terms of Use Attribution of KAKENHI

Powered by NII kakenhi