• Search Research Projects
  • Search Researchers
  • How to Use
  1. Back to previous page

Shapes of functions, asymptotic behavior and function spaces associated with solutions to nonlinear dispersive equations

Research Project

Project/Area Number 17K05311
Research Category

Grant-in-Aid for Scientific Research (C)

Allocation TypeMulti-year Fund
Section一般
Research Field Mathematical analysis
Research InstitutionChiba University

Principal Investigator

Sasaki Hironobu  千葉大学, 大学院理学研究院, 准教授 (00568496)

Project Period (FY) 2017-04-01 – 2024-03-31
Project Status Completed (Fiscal Year 2023)
Budget Amount *help
¥4,550,000 (Direct Cost: ¥3,500,000、Indirect Cost: ¥1,050,000)
Fiscal Year 2021: ¥910,000 (Direct Cost: ¥700,000、Indirect Cost: ¥210,000)
Fiscal Year 2020: ¥1,040,000 (Direct Cost: ¥800,000、Indirect Cost: ¥240,000)
Fiscal Year 2019: ¥910,000 (Direct Cost: ¥700,000、Indirect Cost: ¥210,000)
Fiscal Year 2018: ¥780,000 (Direct Cost: ¥600,000、Indirect Cost: ¥180,000)
Fiscal Year 2017: ¥910,000 (Direct Cost: ¥700,000、Indirect Cost: ¥210,000)
Keywords非線型分散型方程式 / 散乱作用素 / ソボレフ空間 / ディラック方程式 / 散乱問題 / ハートリー項 / クライン・ゴルドン方程式 / ベゾフ空間 / 非線型クライン・ゴルドン方程式 / 調和解析 / 非線形クライン・ゴルドン方程式 / 関数空間 / 平滑化効果 / 修正波動作用素
Outline of Final Research Achievements

In this study, we consider scattering problems for nonlinear dispersive equations. We obtain the following results:
(1) We considered the 3-dim. Klein-Gordon equations whose nonlinearity is cubic, and we proved that the scattering operator maintain the smoothness and decay of the input data. (2) We considered the 2-dim. Klein-Gordon equations whose nonlinearity behaves like u(exp(|u|^2)-1), and we proved that the scattering operator maintain the smoothness and decay of the input data. (3) We considered the semi-relativistic equation whose interaction potential satisfies some suitable conditions, and we proved that the scattering operator maintain the smoothness and decay of the input data.

Academic Significance and Societal Importance of the Research Achievements

本研究で得られた成果を分かりやすく述べると、「入力データとして与えた関数(実験の世界では粒子に相当)が滑らかだったり、遠方で減衰するものであったら、滑らかな非線型相互作用によって変化した出力データも同程度以上の滑らかさや減衰性をもつことを示した」となる。純粋数学的には散乱の逆問題に応用が可能と思われる。また、粒子の実験を行う際の有用なヒントにもなりうる。

Report

(8 results)
  • 2023 Annual Research Report   Final Research Report ( PDF )
  • 2022 Research-status Report
  • 2021 Research-status Report
  • 2020 Research-status Report
  • 2019 Research-status Report
  • 2018 Research-status Report
  • 2017 Research-status Report
  • Research Products

    (12 results)

All 2024 2023 2022 2021 2020 2018 2017 Other

All Journal Article (10 results) (of which Peer Reviewed: 10 results,  Open Access: 1 results) Presentation (1 results) Remarks (1 results)

  • [Journal Article] Remark on the scattering operator for the semi-relativistic Hartree equation2024

    • Author(s)
      H. Sasaki
    • Journal Title

      Adv. Stud. Pure Math

      Volume: -

    • Related Report
      2023 Annual Research Report
    • Peer Reviewed
  • [Journal Article] Remark on the scattering operator for the two-dimensional nonlinear Klein-Gordon equation with exponential nonlinearity2024

    • Author(s)
      H. Sasaki
    • Journal Title

      Kyushu J. Math.

      Volume: 78

    • Related Report
      2023 Annual Research Report
    • Peer Reviewed
  • [Journal Article] Remark on the scattering operator for the two-dimensional nonlinear Klein-Gordon equation with exponential nonlinearity2023

    • Author(s)
      H. Sasaki
    • Journal Title

      Kyushu J. Math.

      Volume: -

    • Related Report
      2022 Research-status Report
    • Peer Reviewed
  • [Journal Article] Dispersive estimates for quantum walks on 1D lattice2022

    • Author(s)
      MAEDA Masaya、SASAKI Hironobu、SEGAWA Etsuo、SUZUKI Akito、SUZUKI Kanako
    • Journal Title

      Journal of the Mathematical Society of Japan

      Volume: 74 Issue: 1 Pages: 217-246

    • DOI

      10.2969/jmsj/85218521

    • NAID

      130008144272

    • ISSN
      0025-5645, 1881-1167, 1881-2333
    • Related Report
      2021 Research-status Report
    • Peer Reviewed
  • [Journal Article] Dispersive estimates for quantum walks on 1D lattice2021

    • Author(s)
      Masaya Maeda, Hironobu Sasaki, Etsuo Segawa, Akito Suzuki and Kanako Suzuki
    • Journal Title

      Journal of the Mathematical Society of Japan

      Volume: -

    • NAID

      130008144272

    • Related Report
      2020 Research-status Report
    • Peer Reviewed
  • [Journal Article] The scattering problem for the three-dimensional cubic nonlinear Klein-Gordon equation with rapidly decreasing input data2020

    • Author(s)
      Hironobu Sasaki
    • Journal Title

      Journal of Differential Equations

      Volume: 268 Issue: 12 Pages: 7774-7802

    • DOI

      10.1016/j.jde.2019.11.083

    • Related Report
      2020 Research-status Report 2019 Research-status Report
    • Peer Reviewed
  • [Journal Article] Scattering and inverse scattering for nonlinear quantum walks2018

    • Author(s)
      Maeda Masaya, Sasaki Hironobu, Segawa Etsuo、Suzuki Akito、Suzuki Kanako
    • Journal Title

      Discrete & Continuous Dynamical Systems - A

      Volume: 38 Issue: 7 Pages: 3687-3703

    • DOI

      10.3934/dcds.2018159

    • Related Report
      2018 Research-status Report
    • Peer Reviewed
  • [Journal Article] Weak limit theorem for a nonlinear quantum walk2018

    • Author(s)
      M. Maeda, H. Sasaki, E. Segawa, A. Suzuki and K. Suzuki
    • Journal Title

      Quantum Inf Process

      Volume: 17 Issue: 9 Pages: 215-215

    • DOI

      10.1007/s11128-018-1981-z

    • Related Report
      2018 Research-status Report
    • Peer Reviewed
  • [Journal Article] On the analytic smoothing effect for the Hartree equation2017

    • Author(s)
      H. Sasaki
    • Journal Title

      J. Math. Anal. Appl.

      Volume: 455 Issue: 2 Pages: 1088-1109

    • DOI

      10.1016/j.jmaa.2017.05.067

    • Related Report
      2017 Research-status Report
    • Peer Reviewed
  • [Journal Article] Remark on the analytic smoothing effect for the Hartree2017

    • Author(s)
      H. Sasaki
    • Journal Title

      RIMS Kokyuroku Bessatsu

      Volume: B65

    • Related Report
      2017 Research-status Report
    • Peer Reviewed / Open Access
  • [Presentation] The scattering problem for the three-dimensional cubic nonlinear Klein-Gordon equation with rapidly decreasing input data2021

    • Author(s)
      佐々木 浩宣
    • Organizer
      日本数学会2021年度年会
    • Related Report
      2020 Research-status Report
  • [Remarks] 研究活動

    • URL

      http://www.math.s.chiba-u.ac.jp/~sasaki/J-re.html

    • Related Report
      2023 Annual Research Report 2022 Research-status Report 2021 Research-status Report 2020 Research-status Report 2019 Research-status Report 2018 Research-status Report 2017 Research-status Report

URL: 

Published: 2017-04-28   Modified: 2025-01-30  

Information User Guide FAQ News Terms of Use Attribution of KAKENHI

Powered by NII kakenhi