• Search Research Projects
  • Search Researchers
  • How to Use
  1. Back to previous page

Developing mathematical methods for compressible fluids and their application to other equations

Research Project

Project/Area Number 17K05315
Research Category

Grant-in-Aid for Scientific Research (C)

Allocation TypeMulti-year Fund
Section一般
Research Field Mathematical analysis
Research InstitutionGifu University

Principal Investigator

Tsuge Naoki  岐阜大学, 教育学部, 准教授 (30449897)

Project Period (FY) 2017-04-01 – 2024-03-31
Project Status Completed (Fiscal Year 2023)
Budget Amount *help
¥4,420,000 (Direct Cost: ¥3,400,000、Indirect Cost: ¥1,020,000)
Fiscal Year 2021: ¥780,000 (Direct Cost: ¥600,000、Indirect Cost: ¥180,000)
Fiscal Year 2020: ¥780,000 (Direct Cost: ¥600,000、Indirect Cost: ¥180,000)
Fiscal Year 2019: ¥910,000 (Direct Cost: ¥700,000、Indirect Cost: ¥210,000)
Fiscal Year 2018: ¥910,000 (Direct Cost: ¥700,000、Indirect Cost: ¥210,000)
Fiscal Year 2017: ¥1,040,000 (Direct Cost: ¥800,000、Indirect Cost: ¥240,000)
Keywords圧縮性オイラー方程式 / 不変領域 / グローバル・アトラクター / 古典解 / 減衰評価 / 保存則 / 解の減衰評価 / グローバルアトラクター / ノズル流 / チョーキング / 時間大域解 / 時間周期解 / ピストン問題 / エネルギー不等式 / 反応拡散方程式 / 時間大域解の存在 / 漸近挙動 / 周期解 / 外力 / 差分法 / 偏微分方程式
Outline of Final Research Achievements

In this study, we mathematically investigate the properties of solutions to the compressible Euler equation. The first result was the existence of a global attractor for the one-dimensional Euler equation. This means that if the solution is bounded, it will be attracted to a certain bounded region. This is an important property in showing the attenuation of the solution. The second result was the existence of a classical solution in the time-global domain for the equation expressing the internal flow of a nozzle. This equation is generally known to have discontinuous solutions. On the other hand, the classical solution in this case represents a first-order continuously differentiable solution. The existence of time-global solutions containing discontinuous solutions was known, but the existence of classical solutions in time-global terms was unknown.

Academic Significance and Societal Importance of the Research Achievements

圧縮性オイラー方程式に対して、大きな変動をもつ解の漸近挙動は未だに知られていない大きな未解決問題である。それを示す上で、本研究の成果であるグローバル・アトラクターの存在は非常に大きな一歩である。今までは、大きな変動をもつ解に対して、解の減衰評価は、まったく知られていなかった。本研究の結果は、それを与えるものである。
1次元の圧縮性オイラー方程式に対しては、古典解(微分可能な解)の存在は古くから知られていた。一方、ノズル流に関しては、殆ど知られていない。本研究の結果は、それを与えるという意味で有意義である。

Report

(8 results)
  • 2023 Annual Research Report   Final Research Report ( PDF )
  • 2022 Research-status Report
  • 2021 Research-status Report
  • 2020 Research-status Report
  • 2019 Research-status Report
  • 2018 Research-status Report
  • 2017 Research-status Report
  • Research Products

    (17 results)

All 2023 2022 2021 2020 2019 2018 Other

All Int'l Joint Research (3 results) Journal Article (8 results) (of which Int'l Joint Research: 3 results,  Peer Reviewed: 8 results,  Open Access: 1 results) Presentation (6 results) (of which Int'l Joint Research: 2 results,  Invited: 3 results)

  • [Int'l Joint Research] Hangzhou Normal University(中国)

    • Related Report
      2023 Annual Research Report
  • [Int'l Joint Research] Soochow University/National Central University(その他の国・地域)

    • Related Report
      2023 Annual Research Report
  • [Int'l Joint Research] Hangzhou Normal University(中国)

    • Related Report
      2018 Research-status Report
  • [Journal Article] Existence of a Time Periodic Solution for the Compressible Euler Equation with a Time Periodic Outer Force in a Bounded Interval2023

    • Author(s)
      Tsuge, Naoki
    • Journal Title

      Archive for Rational Mechanics and Analysis

      Volume: 247 Issue: 3

    • DOI

      10.1007/s00205-023-01874-9

    • Related Report
      2022 Research-status Report
    • Peer Reviewed
  • [Journal Article] Uniformly time-independent L∞ estimate for a one-dimensional hydrodynamic model of semiconductors2022

    • Author(s)
      N. Tsuge, Yun-guang Lu
    • Journal Title

      Front. Math. China

      Volume: -

    • Related Report
      2021 Research-status Report
    • Peer Reviewed / Int'l Joint Research
  • [Journal Article] Global existence of a solution for isentropic gas flow in the Laval nozzle with a friction2022

    • Author(s)
      N. Tsuge
    • Journal Title

      SIAM J. Math. Anal.

      Volume: -

    • Related Report
      2021 Research-status Report
    • Peer Reviewed
  • [Journal Article] A well-posedness for the reaction diffusion equations of Belousov-Zhabotinsky reaction2021

    • Author(s)
      S Kondo, NOVRIANTI, O Sawada, N Tsuge
    • Journal Title

      Osaka Journal of Mathematics

      Volume: 58 Pages: 59-70

    • Related Report
      2020 Research-status Report
    • Peer Reviewed / Open Access / Int'l Joint Research
  • [Journal Article] Existence of a time periodic solution for the compressible Euler equation with a time periodic outer force2020

    • Author(s)
      Naoki Tsuge
    • Journal Title

      Nonlinear Analysis: Real World Applications

      Volume: Volume 53 Pages: 103080-103080

    • DOI

      10.1016/j.nonrwa.2019.103080

    • Related Report
      2019 Research-status Report
    • Peer Reviewed
  • [Journal Article] A WELL-POSEDNESS FOR THE REACTION DIFFUSION EQUATIONS OF BELOUSOV-ZHABOTINSKY REACTIO2020

    • Author(s)
      S. KONDO, NOVRIANTI, O. SAWADA, N. TSUGE
    • Journal Title

      Osaka Journal of Mathematics

      Volume: -

    • Related Report
      2019 Research-status Report
    • Peer Reviewed
  • [Journal Article] Global existence and stability to the polytropic gas dynamics with an outer force2019

    • Author(s)
      Yan-bo Hu a, Yun-guang Lu, Naoki Tsuge
    • Journal Title

      Applied Mathematics Letters

      Volume: 95 Pages: 36-40

    • DOI

      10.1016/j.aml.2019.03.022

    • Related Report
      2018 Research-status Report
    • Peer Reviewed / Int'l Joint Research
  • [Journal Article] GLOBAL ENTROPY SOLUTIONS TO THE COMPRESSIBLE EULER EQUATIONS IN THE ISENTROPIC NOZZLE FLOW2019

    • Author(s)
      Naoki Tsuge
    • Journal Title

      HYP2018 proceedings 印刷中

      Volume: -

    • Related Report
      2018 Research-status Report
    • Peer Reviewed
  • [Presentation] 圧縮性オイラー方程式の解の減衰評価について2023

    • Author(s)
      柘植直樹
    • Organizer
      北見工業大学における微分方程式セミナー
    • Related Report
      2023 Annual Research Report
  • [Presentation] DECAY OF SOLUTIONS OF ISENTROPIC GAS DYNAMICS FOR LARGE DATA2023

    • Author(s)
      Naoki Tsuge
    • Organizer
      East Asian Workshop on PDEs from Kinetics and Continuum Mechanics
    • Related Report
      2023 Annual Research Report
    • Int'l Joint Research / Invited
  • [Presentation] GLOBAL ENTROPY SOLUTIONS TO THE COMPRESSIBLE EULER EQUATIONS IN THE ISENTROPIC NOZZLE FLOW2018

    • Author(s)
      Naoki Tsuge
    • Organizer
      HYP2018
    • Related Report
      2018 Research-status Report
    • Int'l Joint Research
  • [Presentation] ノズル内の気体の運動:時間大域解の存在と不変領域2018

    • Author(s)
      柘植直樹
    • Organizer
      非線形現象の数値シミュレーションと解析2018
    • Related Report
      2017 Research-status Report
    • Invited
  • [Presentation] ノズル内の気体の等エントロピー流れ2018

    • Author(s)
      柘植直樹
    • Organizer
      第1回松江数理生物学・現象数理学ワークショップ
    • Related Report
      2017 Research-status Report
  • [Presentation] Global entropy solutions to the compressible Euler equations in the isentropic nozzle ow for large data2018

    • Author(s)
      柘植直樹
    • Organizer
      流体と気体の数学解析
    • Related Report
      2017 Research-status Report
    • Invited

URL: 

Published: 2017-04-28   Modified: 2025-01-30  

Information User Guide FAQ News Terms of Use Attribution of KAKENHI

Powered by NII kakenhi