• Search Research Projects
  • Search Researchers
  • How to Use
  1. Back to previous page

Geometric Analysis of Schroedinger equations on symmetric spaces

Research Project

Project/Area Number 17K05328
Research Category

Grant-in-Aid for Scientific Research (C)

Allocation TypeMulti-year Fund
Section一般
Research Field Mathematical analysis
Research InstitutionUniversity of Tsukuba

Principal Investigator

Kakehi Tomoyuki  筑波大学, 数理物質系, 教授 (70231248)

Project Period (FY) 2017-04-01 – 2022-03-31
Project Status Completed (Fiscal Year 2021)
Budget Amount *help
¥4,420,000 (Direct Cost: ¥3,400,000、Indirect Cost: ¥1,020,000)
Fiscal Year 2019: ¥1,430,000 (Direct Cost: ¥1,100,000、Indirect Cost: ¥330,000)
Fiscal Year 2018: ¥1,300,000 (Direct Cost: ¥1,000,000、Indirect Cost: ¥300,000)
Fiscal Year 2017: ¥1,690,000 (Direct Cost: ¥1,300,000、Indirect Cost: ¥390,000)
Keywords対称空間 / 幾何解析 / シュレディンガー方程式 / 平均値作用素 / 全射性 / 合成積作用素 / 基本解 / 帯球関数 / ワイル領域 / 球関数 / 関数方程式論 / タルボット効果
Outline of Final Research Achievements

At the beginning, the purpose of our research was to study the detailed geometric and analytical structure of the fundamental solution to the Schroedinger equation on symmetric spaces.However, through the analysis of zonal spherical functions on symmetric spaces,we found that our research is closely related to the study of the operator theoretical property of mean value operators on symmetric spaces.Therefore, we decided to focus on this subject. The result we obtained in our research program is as follows.
We consider the mean value operator to be a map from the space of smooth functions to itself. Then we proved that the mean value operator is surjective under some suitable conditions.We also obtained some related results on convolution operators.It is expected that our result will be applied to the wave equations on symmetric spaces.

Academic Significance and Societal Importance of the Research Achievements

平均値作用素および関連する合成積作用素の作用素論的性質の研究はユークリッド空間上でのみ研究されており、対称空間上では主だった結果はなかった。本研究により、平均値作用素と対称空間の幾何構造との密接な関係が明らかになったことは意義がある。また、本研究により、対称空間上で研究する有効な方法が開発された点、および、対称空間上の微分方程式や調和解析を研究するための新しい方法が提供された点でも意義がある。

Report

(6 results)
  • 2021 Annual Research Report   Final Research Report ( PDF )
  • 2020 Research-status Report
  • 2019 Research-status Report
  • 2018 Research-status Report
  • 2017 Research-status Report
  • Research Products

    (14 results)

All 2021 2019 2018 2017 Other

All Int'l Joint Research (4 results) Journal Article (3 results) (of which Int'l Joint Research: 2 results,  Peer Reviewed: 3 results,  Open Access: 2 results) Presentation (6 results) (of which Int'l Joint Research: 2 results,  Invited: 6 results) Funded Workshop (1 results)

  • [Int'l Joint Research] タフツ大学/コルゲート大学(米国)

    • Related Report
      2021 Annual Research Report
  • [Int'l Joint Research] Tufts University/Colgate University(米国)

    • Related Report
      2020 Research-status Report
  • [Int'l Joint Research] タフツ大学/コルゲート大学(米国)

    • Related Report
      2018 Research-status Report
  • [Int'l Joint Research] タフツ大学/コルゲート大学(米国)

    • Related Report
      2017 Research-status Report
  • [Journal Article] Surjectivity of convolution operators on noncompact symmetric spaces2021

    • Author(s)
      Gonzalez Fulton、Wang Jue、Kakehi Tomoyuki
    • Journal Title

      Journal of Functional Analysis

      Volume: 280 Issue: 2 Pages: 108805-108805

    • DOI

      10.1016/j.jfa.2020.108805

    • Related Report
      2021 Annual Research Report 2020 Research-status Report
    • Peer Reviewed / Int'l Joint Research
  • [Journal Article] Surjectivity of mean value operators on noncompact symmetric spaces2017

    • Author(s)
      Christensen Jens、Gonzalez Fulton、Kakehi Tomoyuki
    • Journal Title

      Journal of Functional Analysis

      Volume: 272 Issue: 9 Pages: 3610-3646

    • DOI

      10.1016/j.jfa.2016.12.022

    • Related Report
      2017 Research-status Report
    • Peer Reviewed / Open Access / Int'l Joint Research
  • [Journal Article] Blowup and global existence of a solution to a semilinear reaction-diffusion system with the fractional Laplacian2017

    • Author(s)
      Kakehi Tomoyuki、 Oshita Yoshihito
    • Journal Title

      Mathematical Journal of Okayama University

      Volume: 59 Pages: 175-218

    • NAID

      120005898816

    • Related Report
      2017 Research-status Report
    • Peer Reviewed / Open Access
  • [Presentation] Mean Value Operators on Non-compact Symmetric Spaces2019

    • Author(s)
      Tomoyuki Kakehi
    • Organizer
      Modern Challenges in Imaging
    • Related Report
      2019 Research-status Report
    • Int'l Joint Research / Invited
  • [Presentation] Snapshot problem for wave equations2019

    • Author(s)
      筧 知之
    • Organizer
      2019 夏の作用素論シンポジウム
    • Related Report
      2019 Research-status Report
    • Invited
  • [Presentation] Mean Value Operators on Euclidean spaces and Noncompact Symmetric spaces2019

    • Author(s)
      筧 知之
    • Organizer
      RIMS共同研究 幾何構造がもたらすスペクトル解析における新展開
    • Related Report
      2019 Research-status Report
    • Invited
  • [Presentation] Mean value operators on noncompact symmetric spaces2019

    • Author(s)
      Tomoyuki Kakehi
    • Organizer
      Himeji Conference on Partial Differential Equations
    • Related Report
      2018 Research-status Report
    • Int'l Joint Research / Invited
  • [Presentation] 対称空間上の平均値作用素2018

    • Author(s)
      筧 知之
    • Organizer
      研究集会 第1回 解析学の壺
    • Related Report
      2018 Research-status Report
    • Invited
  • [Presentation] 平均値作用素の全射性2017

    • Author(s)
      筧 知之
    • Organizer
      「微分方程式と幾何学」研究集会
    • Related Report
      2017 Research-status Report
    • Invited
  • [Funded Workshop] Tomography and Inverse Problems2019

    • Related Report
      2018 Research-status Report

URL: 

Published: 2017-04-28   Modified: 2023-01-30  

Information User Guide FAQ News Terms of Use Attribution of KAKENHI

Powered by NII kakenhi