• Search Research Projects
  • Search Researchers
  • How to Use
  1. Back to previous page

Research on the variational problems under various growth conditions on the functionals

Research Project

Project/Area Number 17K05337
Research Category

Grant-in-Aid for Scientific Research (C)

Allocation TypeMulti-year Fund
Section一般
Research Field Mathematical analysis
Research InstitutionTokyo University of Science

Principal Investigator

Tachikawa Atsushi  東京理科大学, 理工学部数学科, 嘱託教授(非常勤) (50188257)

Project Period (FY) 2017-04-01 – 2021-03-31
Project Status Discontinued (Fiscal Year 2020)
Budget Amount *help
¥4,420,000 (Direct Cost: ¥3,400,000、Indirect Cost: ¥1,020,000)
Fiscal Year 2020: ¥1,040,000 (Direct Cost: ¥800,000、Indirect Cost: ¥240,000)
Fiscal Year 2019: ¥1,040,000 (Direct Cost: ¥800,000、Indirect Cost: ¥240,000)
Fiscal Year 2018: ¥1,040,000 (Direct Cost: ¥800,000、Indirect Cost: ¥240,000)
Fiscal Year 2017: ¥1,300,000 (Direct Cost: ¥1,000,000、Indirect Cost: ¥300,000)
Keywords変分問題 / 弱解の正則性 / p(x)-growth / Φ-growth / double phase functional / Double phase / 変動指数を持つ汎関数 / 解析学 / double phase / Orlicz空間 / 解の正則性 / 部分正則性 / 非標準的増大度 / 関数方程式論 / Non-standard growth / 変動指数
Outline of Final Research Achievements

The aim of this research is to obtain new results about regularity of solutions for variational problems. We call the problems to obtain minimum point (or more generally, critical points and stationary points) as variational problems. Many familiar shapes such as soap films are the solution to the variational problem.
When dealing with variational problems mathematically, it is generally difficult to directly show the existence of a solution in the class of continuous or even differentiable functions. So, in many cases, we follow the process showing the existence of "weak solutions" which solve the problem in some weak sense in Sobolev spaces; spaces of "weakly differentiable" functions, and then showing the differentiability of the weak solutions. In this research, we considered the second process and have obtain several new results.

Academic Significance and Societal Importance of the Research Achievements

一般に非線型偏微分方程式に対して,ソボレフ空間(弱い意味での導関数がp-乘可積分である関数の空間)における解,すなわち弱解の存在は比較的容易に示されることが多く,むしろ存在が保証された弱解が,そもそもの問題にとって適切な滑らかさ(連続性,微分可能性)を持つことを示す点に難しさがある場合が多い.このような弱解の滑らかさに関数問題を「正則性の問題」と呼んでいる.本研究では,変分問題の解に対してこの「滑らかさの問題」を扱い,新たな結果を得た.
本研究で扱った問題は,近年ヨーロッパを中心に,その応用も含めて盛んに研究されている分野であり,この分野で新たな結果を得た意義は小さくない.

Report

(4 results)
  • 2020 Final Research Report ( PDF )
  • 2019 Annual Research Report
  • 2018 Research-status Report
  • 2017 Research-status Report
  • Research Products

    (11 results)

All 2020 2019 2018 2017 Other

All Int'l Joint Research (3 results) Journal Article (6 results) (of which Int'l Joint Research: 5 results,  Peer Reviewed: 6 results) Presentation (2 results) (of which Int'l Joint Research: 1 results,  Invited: 2 results)

  • [Int'l Joint Research] Napoli Federico II世 大学/Catania大学(イタリア)

    • Related Report
      2019 Annual Research Report
  • [Int'l Joint Research] ナポリ・フェデリコ2世大学/カターニア大学(イタリア)

    • Related Report
      2018 Research-status Report
  • [Int'l Joint Research] ナポリ・フェデリコ二世大学/カターニア大学(イタリア)

    • Related Report
      2017 Research-status Report
  • [Journal Article] Boundary regularity of minimizers of double phase functionals2020

    • Author(s)
      Tachikawa Atsushi
    • Journal Title

      Journal of Mathematical Analysis and Applications

      Volume: - Issue: 1 Pages: 123946-123946

    • DOI

      10.1016/j.jmaa.2020.123946

    • Related Report
      2019 Annual Research Report
    • Peer Reviewed
  • [Journal Article] Partial and full boundary regularity for non-autonomous functionals with Φ-growth conditions2019

    • Author(s)
      Giannetti Flavia、Passarelli di Napoli Antonia、Tachikawa Atsushi
    • Journal Title

      Forum Mathematicum

      Volume: 31 Issue: 4 Pages: 1027-1050

    • DOI

      10.1515/forum-2019-0039

    • Related Report
      2019 Annual Research Report
    • Peer Reviewed / Int'l Joint Research
  • [Journal Article] Regularity for minimizers for functionals of double phase with variable exponents2019

    • Author(s)
      Ragusa Maria Alessandra、Tachikawa Atsushi
    • Journal Title

      Advances in Nonlinear Analysis

      Volume: 9 Issue: 1 Pages: 710-728

    • DOI

      10.1515/anona-2020-0022

    • Related Report
      2019 Annual Research Report
    • Peer Reviewed / Int'l Joint Research
  • [Journal Article] New challenges on the regularity of minimizers of functionals2018

    • Author(s)
      Maria Alessandra Ragusa, Atsushi Tachikawa
    • Journal Title

      JOURNAL OF CONVEX ANALYSIS

      Volume: 25

    • Related Report
      2018 Research-status Report
    • Peer Reviewed / Int'l Joint Research
  • [Journal Article] Partial regularity results for non-autonomous functionals with Φ-growth conditions2017

    • Author(s)
      Falvia Giannetti, Antonia Passarelli di Napoli, Atsushi Tachikawa
    • Journal Title

      Annali di Matematica Pura ed Applicata. Series IV

      Volume: 196 Issue: 6 Pages: 2147-2165

    • DOI

      10.1007/s10231-017-0658-z

    • Related Report
      2017 Research-status Report
    • Peer Reviewed / Int'l Joint Research
  • [Journal Article] Partial regularity for minimizers of a class of non autonomous functionals with nonstandard growth2017

    • Author(s)
      Giannetti Flavia、Passarelli di Napoli Antonia、Ragusa Maria Alessandra、Tachikawa Atsushi
    • Journal Title

      Calculus of Variations and Partial Differential Equations

      Volume: 56 Issue: 6

    • DOI

      10.1007/s00526-017-1248-z

    • Related Report
      2017 Research-status Report
    • Peer Reviewed / Int'l Joint Research
  • [Presentation] Partial regularity results for minimizers of a class of functionals with nonstandard growth2018

    • Author(s)
      立川 篤
    • Organizer
      松山解析セミナー2018
    • Related Report
      2017 Research-status Report
    • Invited
  • [Presentation] Some regularity results for energy minimizing maps into Finsler manifolds2017

    • Author(s)
      Atsushi Tachikawa
    • Organizer
      Seminario di Analisi (ナポリ大学における公開セミナー)
    • Related Report
      2017 Research-status Report
    • Int'l Joint Research / Invited

URL: 

Published: 2017-04-28   Modified: 2022-01-27  

Information User Guide FAQ News Terms of Use Attribution of KAKENHI

Powered by NII kakenhi