• Search Research Projects
  • Search Researchers
  • How to Use
  1. Back to previous page

Asymptotic behavior of solutions of dissipative hyperbolic equations

Research Project

Project/Area Number 17K05338
Research Category

Grant-in-Aid for Scientific Research (C)

Allocation TypeMulti-year Fund
Section一般
Research Field Mathematical analysis
Research InstitutionTokyo University of Science

Principal Investigator

Yamazaki Taeko  東京理科大学, 理工学部数学科, 教授 (60220315)

Project Period (FY) 2017-04-01 – 2021-03-31
Project Status Completed (Fiscal Year 2020)
Budget Amount *help
¥1,950,000 (Direct Cost: ¥1,500,000、Indirect Cost: ¥450,000)
Fiscal Year 2019: ¥650,000 (Direct Cost: ¥500,000、Indirect Cost: ¥150,000)
Fiscal Year 2018: ¥650,000 (Direct Cost: ¥500,000、Indirect Cost: ¥150,000)
Fiscal Year 2017: ¥650,000 (Direct Cost: ¥500,000、Indirect Cost: ¥150,000)
Keywords消散型波動方程式 / 微分喪失型消散波動方程式 / 拡散現象 / structural dampping / structural damping / 解の漸近形 / 大域解の存在 / 解析学
Outline of Final Research Achievements

It is known that solutions of linear wave equation with constant dissipation tend to solutions of corresponding parabolic equation, which is called diffusion phenomenon.Asymptotic behavior of solutions of wave equation with dissipative term of variable coefficients, depend on decay order of coefficient. On this research, we showed diffusion phenomenon of semilinear wave equation with constant structural dissipation and dissipative wave equation with time dependent coefficients of principal part and dissipative term. On the other hand, we showed continuity of wave operator and scattering operator on quasilinear dissipative wave equation of Kirchhoff type. Especially in the case that the coefficient of dissipative term is monotone decreasing, we obtained necessary and sufficient condition for the solution to be asymptotically free.

Academic Significance and Societal Importance of the Research Achievements

消散項が周波数の分数冪に依存する構造的消散項をもつ波動方程式に関する大域解の一意存在性に関して先行研究で置かれていた冪と空間次元の関係に対する制限を外したことにより,統一的な結果を得ることができた.主部及び消散項が変数係数の場合についての拡散現象を示したことは,今後準線形方程式にも応用できることが見込まれる.また,Kichhoff型準線型波動方程式の漸近自由となるための必要十分条件が線形方程式と異なることを示すことにより,半線形と準線形の違いを明確にした.

Report

(5 results)
  • 2020 Annual Research Report   Final Research Report ( PDF )
  • 2019 Research-status Report
  • 2018 Research-status Report
  • 2017 Research-status Report
  • Research Products

    (6 results)

All 2021 2019 2018 2017

All Journal Article (3 results) (of which Int'l Joint Research: 1 results,  Peer Reviewed: 3 results,  Open Access: 1 results) Presentation (3 results) (of which Int'l Joint Research: 2 results,  Invited: 3 results)

  • [Journal Article] Asymptotic profile of solutions for abstract linear wave equations with time decaying propagation and dissipation2021

    • Author(s)
      Taeko Yamazaki
    • Journal Title

      Asymptotic Analysis

      Volume: Pre-press Issue: 1-2 Pages: 109-161

    • DOI

      10.3233/asy-201665

    • Related Report
      2020 Annual Research Report
    • Peer Reviewed
  • [Journal Article] Asymptotic profile of solutions for semilinear wave equations with structural damping2019

    • Author(s)
      Taeko Yamazaki
    • Journal Title

      Nonlinear Differential Equations and Applications

      Volume: 26:16 Issue: 3 Pages: 1-43

    • DOI

      10.1007/s00030-019-0562-x

    • Related Report
      2019 Research-status Report
    • Peer Reviewed / Open Access / Int'l Joint Research
  • [Journal Article] Scattering for quasilinear hyperbolic equations of Kirchhoff tyoe with perturbation2017

    • Author(s)
      Taeko Yamazaki
    • Journal Title

      Osaka J. Math.

      Volume: 54

    • Related Report
      2017 Research-status Report
    • Peer Reviewed
  • [Presentation] Asymptotic profile of solutions for semilinear wave equations with structural damping2019

    • Author(s)
      山崎多恵子
    • Organizer
      Workshop: Critical exponent and nonlinear evolution equations 2019
    • Related Report
      2018 Research-status Report
    • Int'l Joint Research / Invited
  • [Presentation] Asymptotic profile of solutions for semilinear wave equations with structural damping2018

    • Author(s)
      山崎多恵子
    • Organizer
      応用解析研究会
    • Related Report
      2018 Research-status Report
    • Invited
  • [Presentation] Global existence and asymptotic prole of solutions to semilinear wave equations with structural damping2018

    • Author(s)
      Taeko Yamazaki
    • Organizer
      Hyperbolic Partial Differential Equations and Related Topics
    • Related Report
      2017 Research-status Report
    • Int'l Joint Research / Invited

URL: 

Published: 2017-04-28   Modified: 2022-01-27  

Information User Guide FAQ News Terms of Use Attribution of KAKENHI

Powered by NII kakenhi