On Factor problems in graph on surfaces
Project/Area Number |
17K05349
|
Research Category |
Grant-in-Aid for Scientific Research (C)
|
Allocation Type | Multi-year Fund |
Section | 一般 |
Research Field |
Foundations of mathematics/Applied mathematics
|
Research Institution | Keio University |
Principal Investigator |
Fujisawa Jun 慶應義塾大学, 商学部(日吉), 教授 (00516099)
|
Project Period (FY) |
2017-04-01 – 2021-03-31
|
Project Status |
Completed (Fiscal Year 2020)
|
Budget Amount *help |
¥4,550,000 (Direct Cost: ¥3,500,000、Indirect Cost: ¥1,050,000)
Fiscal Year 2019: ¥1,300,000 (Direct Cost: ¥1,000,000、Indirect Cost: ¥300,000)
Fiscal Year 2018: ¥2,210,000 (Direct Cost: ¥1,700,000、Indirect Cost: ¥510,000)
Fiscal Year 2017: ¥1,040,000 (Direct Cost: ¥800,000、Indirect Cost: ¥240,000)
|
Keywords | 位相幾何学的グラフ理論 / 因子問題 / 完全マッチング / 三角形分割 / マッチング拡張性 / マッチング拡張 / タフネス / ハミルトンサイクル / 2-因子 / 3-連結3-正則グラフ / マッチング / クローフリーグラフ / グラフ理論 / 禁止マイナー |
Outline of Final Research Achievements |
The following is the main part of the results obtained in this research. Firstly, it turned out that every 3-conncted 3-regular bipartite graph on a surface is distance matchable. Secondly, the problem concerning separating 3-cycles in non-hamiltonian 1-tough triangulation of the plane, posed by Ozeki and Zamfirescu, was solved in the affirmative. Thirdly, as for the existence of the perfect matchings in graphs obtained from 5-connected triangulation of a surface by deleting some vertices, we obtained a generalization of the theorem shown by Kawarabayashi, Plummer and Ozeki. Moreover, we obtaind a short proof and a generalization of the theorem shown by Aldred, Kawarabayashi and Plummer.
|
Academic Significance and Societal Importance of the Research Achievements |
本研究では1993年にBroersmaが提起したハミルトンサイクルに関する予想、2018年にOzeki-Zamfirescuが提起した平面の三角形分割に関する問題の2つの未解決問題がいずれも肯定的に解決されたため、その学術的な意義は大きい。また、閉曲面上の5-連結グラフのマッチング拡張問題においてはいくつかの既存の結果が一般化されるとともに、これまでに三角形分割でしか得られていなかった結果を三角形分割でないグラフへと拡張することに成功し、得られる知見が格段に広がった。
|
Report
(5 results)
Research Products
(21 results)