• Search Research Projects
  • Search Researchers
  • How to Use
  1. Back to previous page

Fast Computation of Birkhoff Average along a Quasi-periodic Orbit and its Applications

Research Project

Project/Area Number 17K05360
Research Category

Grant-in-Aid for Scientific Research (C)

Allocation TypeMulti-year Fund
Section一般
Research Field Foundations of mathematics/Applied mathematics
Research InstitutionHitotsubashi University

Principal Investigator

SAIKI Yoshitaka  一橋大学, 大学院経営管理研究科, 教授 (20433740)

Project Period (FY) 2017-04-01 – 2021-03-31
Project Status Completed (Fiscal Year 2020)
Budget Amount *help
¥4,420,000 (Direct Cost: ¥3,400,000、Indirect Cost: ¥1,020,000)
Fiscal Year 2019: ¥1,560,000 (Direct Cost: ¥1,200,000、Indirect Cost: ¥360,000)
Fiscal Year 2018: ¥1,430,000 (Direct Cost: ¥1,100,000、Indirect Cost: ¥330,000)
Fiscal Year 2017: ¥1,430,000 (Direct Cost: ¥1,100,000、Indirect Cost: ¥330,000)
Keywords力学系 / 準周期軌道 / バーコフ平均 / 高速計算 / 重み付きバーコフ平均 / ヘテロカオス / 時間遅れ埋め込み / 回転数 / ジーゲル板 / ジーゲル球 / 位相共役 / フーリエ級数 / 凖周期軌道 / カオス / 数値解析 / 数値解析学 / モンテカルロ法
Outline of Final Research Achievements

The Birkhoff Ergodic Theorem concludes that time averages, that is, Birkhoff averages of a function f along an ergodic trajectory of a function T converges to the space average. Convergence of the time average to the space average is slow. We introduce a modified average by giving very small weights to the "end" terms. When (x_n) is a trajectory on a quasiperiodic torus and f and T are infinitely differentiable, we show that our weighted Birkhoff averages converge "super" fast, i.e. with error smaller than every polynomial of 1/N. Our goal is to show that our weighted Birkhoff average is a powerful computational tool, and this study illustrates its use for several examples where the quasiperiodic set is one or two dimensional. In particular, we compute rotation numbers and conjugacies (i.e. changes of variables) and their Fourier series, often with 30-digit precision.

Academic Significance and Societal Importance of the Research Achievements

回転数、リアプノフ数などをはじめとしてバーコフ平均は力学系の軌道に関するさまざまな量に関わっている。軌道長Nのバーコフ平均の収束スピードは一般に1/Nのオーダーであり実際に計算で準周期性の判断をすることは困難であった。しかし、研究代表者らは、準周期軌道上のバーコフ平均に対しては、理論的には1/(Nに関する任意の多項式)よりも速く収束する重み付きバーコフ平均を提案してその応用可能性を示した。

Report

(5 results)
  • 2020 Annual Research Report   Final Research Report ( PDF )
  • 2019 Research-status Report
  • 2018 Research-status Report
  • 2017 Research-status Report
  • Research Products

    (27 results)

All 2020 2019 2018 2017 Other

All Int'l Joint Research (5 results) Journal Article (11 results) (of which Int'l Joint Research: 6 results,  Peer Reviewed: 11 results,  Open Access: 1 results) Presentation (7 results) (of which Int'l Joint Research: 3 results,  Invited: 3 results) Remarks (4 results)

  • [Int'l Joint Research] University of Maryland(米国)

    • Related Report
      2020 Annual Research Report
  • [Int'l Joint Research] University of Maryland/New York University/George Mason University(米国)

    • Related Report
      2019 Research-status Report
  • [Int'l Joint Research] University of Maryland/George Mason University/Courant Institute(米国)

    • Related Report
      2018 Research-status Report
  • [Int'l Joint Research] Universidad Rey Juan Carlos(スペイン)

    • Related Report
      2018 Research-status Report
  • [Int'l Joint Research] University of Maryland/George Mason University/Courant Institute(米国)

    • Related Report
      2017 Research-status Report
  • [Journal Article] Machine-learning construction of a model for a macroscopic fluid variable using the delay-coordinate of a scalar observable2020

    • Author(s)
      Nakai Kengo, Saiki Yoshitaka
    • Journal Title

      Discrete & Continuous Dynamical Systems - S

      Volume: - Issue: 3 Pages: 1079-1092

    • DOI

      10.3934/dcdss.2020352

    • Related Report
      2020 Annual Research Report
    • Peer Reviewed / Int'l Joint Research
  • [Journal Article] Machine-learning construction of a model for a macroscopic fluid variable using the delay-coordinate of a scalar observable2020

    • Author(s)
      K. Nakai and Y. Saiki
    • Journal Title

      Discrete and Continuous Dynamical Systems Series S

      Volume: -

    • Related Report
      2019 Research-status Report
    • Peer Reviewed
  • [Journal Article] Solving the Babylonian Problem of quasiperiodic rotation rates2019

    • Author(s)
      S. Das, Y. Saiki, E. Sander and J. A. Yorke
    • Journal Title

      Discrete and Continuous Dynamical Systems Series S

      Volume: 12 Pages: 2279-2305

    • Related Report
      2018 Research-status Report
    • Peer Reviewed / Int'l Joint Research
  • [Journal Article] Quasiperiodic orbits in Siegel disks/balls and the Babylonian problem2018

    • Author(s)
      Y. Saiki and J. A. Yorke
    • Journal Title

      Regular and Chaotic Dynamics

      Volume: 23 Pages: 735-750

    • Related Report
      2018 Research-status Report
    • Peer Reviewed / Int'l Joint Research
  • [Journal Article] Low-dimensional paradigms for high-dimensional hetero-chaos2018

    • Author(s)
      Y. Saiki, M. F. Sanjuan and J. A. Yorke
    • Journal Title

      Chaos

      Volume: 28

    • Related Report
      2018 Research-status Report
    • Peer Reviewed / Int'l Joint Research
  • [Journal Article] Machine-learning inference of fluid variables from data using reservoir computing2018

    • Author(s)
      K. Nakai and Y. Saiki
    • Journal Title

      Physical Review E

      Volume: 98

    • Related Report
      2018 Research-status Report
    • Peer Reviewed
  • [Journal Article] Empirical evaluated SDE modelling for dimensionality reduction systems and its predictability estimates2018

    • Author(s)
      N. Nakano, M. Inatsu, S. Kusuoka and Y. Saiki
    • Journal Title

      Japan Journal of Industrial and Applied Mathematics

      Volume: 印刷中 Issue: 2 Pages: 553-589

    • DOI

      10.1007/s13160-017-0296-2

    • Related Report
      2017 Research-status Report
    • Peer Reviewed
  • [Journal Article] Intermittent transition between synchronization and desynchronization in multi-regional business cycles2018

    • Author(s)
      K. Esashi, T. Onozaki, Y. Saiki and Y. Sato
    • Journal Title

      Structural Change and Economic Dynamics

      Volume: 44 Pages: 68-76

    • DOI

      10.1016/j.strueco.2017.10.005

    • Related Report
      2017 Research-status Report
    • Peer Reviewed / Open Access
  • [Journal Article] Quantitative quasiperiodicity2017

    • Author(s)
      S. Das, Y. Saiki, E. Sander and J. A. Yorke
    • Journal Title

      Nonlinearity

      Volume: 30 Issue: 11 Pages: 4111-4140

    • DOI

      10.1088/1361-6544/aa84c2

    • Related Report
      2017 Research-status Report
    • Peer Reviewed / Int'l Joint Research
  • [Journal Article] Network analyses of chaotic systems through unstable periodic orbits2017

    • Author(s)
      M. U. Kobayashi and Y. Saiki
    • Journal Title

      Chaos

      Volume: 27 Issue: 8 Pages: 081103-081103

    • DOI

      10.1063/1.4995043

    • Related Report
      2017 Research-status Report
    • Peer Reviewed
  • [Journal Article] Generalized Lorenz Equations on a Three-Sphere2017

    • Author(s)
      Y. Saiki, E. Sander and J. A. Yorke
    • Journal Title

      European Physical Journal Special Topics

      Volume: 226 Issue: 9 Pages: 1751-1764

    • DOI

      10.1140/epjst/e2017-70055-y

    • Related Report
      2017 Research-status Report
    • Peer Reviewed / Int'l Joint Research
  • [Presentation] ヘテロカオス2019

    • Author(s)
      齊木吉隆
    • Organizer
      Advancing Interaction among mathematical concepts and methods towards practical problems 2019
    • Related Report
      2019 Research-status Report
    • Invited
  • [Presentation] ヘテロカオスと間欠性2019

    • Author(s)
      齊木吉隆
    • Organizer
      現象と数理モデル2019
    • Related Report
      2019 Research-status Report
  • [Presentation] 機械学習に基づいた流体マクロ変数に関する数理モデル構築ならびに時間発展予測2019

    • Author(s)
      K. Nakai and Y. Saiki
    • Organizer
      理論応用力学講演会  AIMaP 数学応用セッション
    • Related Report
      2019 Research-status Report
    • Invited
  • [Presentation] 流体マクロ変数に関する数理モデルの機械学習に基づく構築2019

    • Author(s)
      K. Nakai and Y. Saiki
    • Organizer
      Prometech Simulation Conference
    • Related Report
      2019 Research-status Report
    • Invited
  • [Presentation] Machine-learning inference of variables of a chaotic fluid flow from data using reservoir computing2019

    • Author(s)
      K. Nakai and Y. Saiki
    • Organizer
      NOLTA2019
    • Related Report
      2019 Research-status Report
    • Int'l Joint Research
  • [Presentation] Machine-learning construction of a model for a macroscopic fluid variable using the delay-coordinate of a scalar observable2019

    • Author(s)
      K. Nakai and Y. Saiki
    • Organizer
      George Mason University Applied and Computational Mathematics Seminar
    • Related Report
      2018 Research-status Report
    • Int'l Joint Research
  • [Presentation] Machine-learning prediction of fluid variables2018

    • Author(s)
      K. Nakai and Y. Saiki
    • Organizer
      Boston University/ Keio University Workshop 2018 Dynamical systems
    • Related Report
      2018 Research-status Report
    • Int'l Joint Research
  • [Remarks] 研究代表者ホームページ

    • URL

      http://saiki.hub.hit-u.ac.jp/

    • Related Report
      2020 Annual Research Report
  • [Remarks] 研究代表者のホームページ

    • URL

      http://saiki.hub.hit-u.ac.jp/

    • Related Report
      2019 Research-status Report
  • [Remarks] Page of Yoshitaka SAIKI

    • URL

      http://saiki.hub.hit-u.ac.jp/

    • Related Report
      2018 Research-status Report
  • [Remarks] http://www.cm.hit-u.ac.jp/~saiki/

    • Related Report
      2017 Research-status Report

URL: 

Published: 2017-04-28   Modified: 2022-12-28  

Information User Guide FAQ News Terms of Use Attribution of KAKENHI

Powered by NII kakenhi