Development of charged particle detector for KOTO experiment
Project/Area Number |
17K05480
|
Research Category |
Grant-in-Aid for Scientific Research (C)
|
Allocation Type | Multi-year Fund |
Section | 一般 |
Research Field |
Particle/Nuclear/Cosmic ray/Astro physics
|
Research Institution | High Energy Accelerator Research Organization |
Principal Investigator |
Lim GeiYoub 大学共同利用機関法人高エネルギー加速器研究機構, 素粒子原子核研究所, 准教授 (90332113)
|
Project Period (FY) |
2017-04-01 – 2020-03-31
|
Project Status |
Completed (Fiscal Year 2019)
|
Budget Amount *help |
¥4,290,000 (Direct Cost: ¥3,300,000、Indirect Cost: ¥990,000)
Fiscal Year 2019: ¥650,000 (Direct Cost: ¥500,000、Indirect Cost: ¥150,000)
Fiscal Year 2018: ¥1,820,000 (Direct Cost: ¥1,400,000、Indirect Cost: ¥420,000)
Fiscal Year 2017: ¥1,820,000 (Direct Cost: ¥1,400,000、Indirect Cost: ¥420,000)
|
Keywords | 荷電粒子測定器 / 中性K中間子希崩壊 / KOTO / 荷電粒子検出器 / ビームデータ解析 / 真空薄膜 / K中間子稀崩壊 / 高真空 |
Outline of Final Research Achievements |
We developed a new type of charged particle detector for the KOTO experiment at J-PARC. The experiment is searching for a clue of new physics beyond the standard model by measuring neutral kaon decay. The decay, a neutral kaon decays into a neutral pion and two neutrinos, is extremely suppressed in the frame of the standard model and is expected its decay probability with exceptionally small theoretical uncertainty. Among various background sources related to the other kaon decay modes, three-pion decay mode including charged pions will be background events when the charged pions are not detected due to hadronic interaction with materials before reaching detector. We fabricated a charged particle detector with compact read-out system and installed it at the most inside of the KOTO detector, where is very limited space and operated in vacuum as 10^(-5) Pa. The detector was successfully installed and showed expected performance to reject the background.
|
Academic Significance and Societal Importance of the Research Achievements |
KOTO実験が探索している中性K中間子の稀崩壊は標準模型を越える新しい物理の探索に最も適している現象である。また、LHC実験で探しているTeV領域より、もっと高いエネルギー領域(1000TeV)までの探索が可能である。しかし、極めて稀なイベントを莫大なバックグラウンドを除去しながら検出する至難の実験なので、KOTO実験が唯一に探索し続けている。KOTO実験が新しい物理の存在を明らかにするためには、発見されているバックグラウンドの原因を調べ、適切な対応をすることを繰り返し、ゴールに近づくしかない。本研究はその一環であり、荷電パイ中間子を含む崩壊によるバックグラウンドを完全に抑えることを目指した。
|
Report
(4 results)
Research Products
(1 results)