Project/Area Number |
17K05585
|
Research Category |
Grant-in-Aid for Scientific Research (C)
|
Allocation Type | Multi-year Fund |
Section | 一般 |
Research Field |
Mathematical physics/Fundamental condensed matter physics
|
Research Institution | Osaka Prefecture University |
Principal Investigator |
Kanki Kazuki 大阪府立大学, 理学(系)研究科(研究院), 准教授 (10264821)
|
Co-Investigator(Kenkyū-buntansha) |
田中 智 大阪府立大学, 理学(系)研究科(研究院), 教授 (80236588)
|
Project Period (FY) |
2017-04-01 – 2021-03-31
|
Project Status |
Completed (Fiscal Year 2020)
|
Budget Amount *help |
¥4,550,000 (Direct Cost: ¥3,500,000、Indirect Cost: ¥1,050,000)
Fiscal Year 2019: ¥1,560,000 (Direct Cost: ¥1,200,000、Indirect Cost: ¥360,000)
Fiscal Year 2018: ¥1,430,000 (Direct Cost: ¥1,100,000、Indirect Cost: ¥330,000)
Fiscal Year 2017: ¥1,560,000 (Direct Cost: ¥1,200,000、Indirect Cost: ¥360,000)
|
Keywords | 非エルミート縮退 / 例外点 / 非平衡統計力学 / 非エルミート量子力学 / 非エルミート / 光吸収スペクトル / 複素固有値問題 |
Outline of Final Research Achievements |
We have studied the behavior of dissipative quantum systems on the basis of equations that describes the time evolution determined by the fundamental laws of physics and not relying on phenomenological equations. We have analyzed the time evolution generators in the Liouville-von Neumann equation for the density matrix, the Heisenberg equation for the operators, and the Schroedinger equation for the wave function, by applying the theory of complex spectrum analysis. In particular, we clarified the conditions under which a branch point of complex eigenvalues called an exception point appears and the effect of the exception point on the dynamic behavior of the system.
|
Academic Significance and Societal Importance of the Research Achievements |
本研究の意義は、現象論的方程式に依らず、微視的力学原理に基づいて、非平衡現象を理解しようとしたところにある。特に、非エルミート縮退の現象が普遍的に起こることは、微視的模型に基づいて有効時間発展演算子を導き、その複素固有値問題を解くことにより初めて明らかとなった。
|