Optimization method for sound-absorbing poroelastic media by using homogenization method and topology optimization method
Project/Area Number |
17K06238
|
Research Category |
Grant-in-Aid for Scientific Research (C)
|
Allocation Type | Multi-year Fund |
Section | 一般 |
Research Field |
Dynamics/Control
|
Research Institution | Kogakuin University |
Principal Investigator |
|
Project Period (FY) |
2017-04-01 – 2020-03-31
|
Project Status |
Completed (Fiscal Year 2019)
|
Budget Amount *help |
¥4,550,000 (Direct Cost: ¥3,500,000、Indirect Cost: ¥1,050,000)
Fiscal Year 2019: ¥1,560,000 (Direct Cost: ¥1,200,000、Indirect Cost: ¥360,000)
Fiscal Year 2018: ¥1,040,000 (Direct Cost: ¥800,000、Indirect Cost: ¥240,000)
Fiscal Year 2017: ¥1,950,000 (Direct Cost: ¥1,500,000、Indirect Cost: ¥450,000)
|
Keywords | 吸音材 / 微視構造 / トポロジー最適化 / 均質化法 / 散逸エネルギー / 均質化 / 吸音率 / 随伴変数法 / 多孔質材料 / 解析・評価 / 多孔質吸音材 |
Outline of Final Research Achievements |
Acoustic properties of sound-absorbing poroelastic media such as sound absorption coefficient are affected by microscopic structures. However, a design method for microscopic structures of sound-absorbing poroelastic media has not been established and the trial and error approach by prototypes is required. In this study, two new design methods for sound-absorbing poroelastic media are proposed. One is a parametric optimization method to design microscopic parameters of sound-absorbing poroelastic media, such as fiber diameter and pore size. In this method, Biot's parameters are identified by the homogenization method and are optimized by genetic algorithm. The other is topology optimization method to design microstructure directly. In this method, the homogenization method based on the asymptotic expansion and the topology optimization method based on density approach is utilized. Microscopic structure of sound-absorbing poroelastic structure is optimized to maximize dissipated energy.
|
Academic Significance and Societal Importance of the Research Achievements |
均質化法を用いマクロスケールで定義された目的関数を最小にするミクロスケールのトポロジーを最適化する設計法は弾性体問題では構築されているが,それを多孔質吸音材というマルチフィジクスの問題に拡張した.随伴変数法と密度法を用いるトポロジー最適化を応用しており,考え方は他のフィジクスにも応用が可能である.また,これまで,試作した吸音材に対して吸音率などの性能を予測・評価するという設計法が用いられており,目標性能を満たすためにはトライアンドエラーが必要であったが,所望の吸音特性となる吸音材料を最適設計するという従来とは逆方向の新しい設計法を構築することができ,設計の効率化,材料の高機能化につながる.
|
Report
(4 results)
Research Products
(15 results)