Project/Area Number |
17K06506
|
Research Category |
Grant-in-Aid for Scientific Research (C)
|
Allocation Type | Multi-year Fund |
Section | 一般 |
Research Field |
Control engineering/System engineering
|
Research Institution | Waseda University |
Principal Investigator |
HU Jinglu 早稲田大学, 理工学術院(情報生産システム研究科・センター), 教授 (50294905)
|
Project Period (FY) |
2017-04-01 – 2020-03-31
|
Project Status |
Completed (Fiscal Year 2019)
|
Budget Amount *help |
¥4,680,000 (Direct Cost: ¥3,600,000、Indirect Cost: ¥1,080,000)
Fiscal Year 2019: ¥1,040,000 (Direct Cost: ¥800,000、Indirect Cost: ¥240,000)
Fiscal Year 2018: ¥1,950,000 (Direct Cost: ¥1,500,000、Indirect Cost: ¥450,000)
Fiscal Year 2017: ¥1,690,000 (Direct Cost: ¥1,300,000、Indirect Cost: ¥390,000)
|
Keywords | 深層ニューラルネットワーク / サポートベクターマシン / 深層学習 / 機械学習 / パターン認識 |
Outline of Final Research Achievements |
In this research, a quasi-linear support vector machine (SVM) is constructed by using deep neural networks, in which a deep quasi-linear kernel is composed by using deep learning. By using the deep quasi-linear SVM, it is possible to realize a deep learning in the cases where there is rather few data. First, pretrain a deep neural network via transfer learning for composing a deep quasi-linear kernel; Then an SVM with the quasi-linear kernel can be obtained using the few data.
|
Academic Significance and Societal Importance of the Research Achievements |
本研究では、サポートベクターマシン(SVM)を深層学習で訓練済みの深層ニューラルネットワークから構築する。SVMのための深層準線形カーネルの構築に通してSVMと深層ニューラルネットワークとの間に橋を架け、近年著しく発展できている深層学習技術を活用し、深層カーネルの学習は大規模なデータの場合でも容易に実現できる。一方、深層学習の立場から見れば、訓練済の深層ニューラルネットワークからSVMのカーネルを合成し(転移学習)、このカーネルに基づいた分類器をSVM 最適化(小データ)することによって、小データでも深層学習の実現が可能になる。
|