• Search Research Projects
  • Search Researchers
  • How to Use
  1. Back to previous page

Construction of Knowledge Learning Model for Tuberculosis Contact Investigation Using Bayesian Network

Research Project

Project/Area Number 17K09222
Research Category

Grant-in-Aid for Scientific Research (C)

Allocation TypeMulti-year Fund
Section一般
Research Field Hygiene and public health
Research Institution公益財団法人結核予防会 結核研究所

Principal Investigator

Uchimura Kazuhiro  公益財団法人結核予防会 結核研究所, 臨床・疫学部 疫学情報室, 副部長 (30247283)

Co-Investigator(Kenkyū-buntansha) 河津 里沙  公益財団法人結核予防会 結核研究所, 臨床・疫学部, 研究員 (10747570)
Project Period (FY) 2017-04-01 – 2020-03-31
Project Status Completed (Fiscal Year 2019)
Budget Amount *help
¥5,070,000 (Direct Cost: ¥3,900,000、Indirect Cost: ¥1,170,000)
Fiscal Year 2019: ¥390,000 (Direct Cost: ¥300,000、Indirect Cost: ¥90,000)
Fiscal Year 2018: ¥4,030,000 (Direct Cost: ¥3,100,000、Indirect Cost: ¥930,000)
Fiscal Year 2017: ¥650,000 (Direct Cost: ¥500,000、Indirect Cost: ¥150,000)
Keywords結核 / 接触者健診 / ベイジアンネットワーク / 知識学習 / 意思決定
Outline of Final Research Achievements

A Tuberculosis contact investigation model based on the characteristics of the index tuberculosis case and contacts was constructed using the Bayesian network method. And the probability of infection of IGRA-positive people was estimated by learning from contact investigation result. Regarding the attribute information, the infection probability (true infection probability) of the IGRA-positive patients when the information was used as a reference and when the information was learned was estimated and compared. The items with high information value as learning were items of initial patient cavity information, contact type, contact density, and contact items for foreign births. The simulation data used include outbreak cases, and the infection rate of the contact target population is considered to be relatively high. However, the estimated a priori probability of infection is about 1.2 to 1.7 times the prior probability.

Academic Significance and Societal Importance of the Research Achievements

一部実データには情報なしの項目等があるため、現時点では補完したシミュレーションデータによる解析でモデル精度向上をすすめているが、実情報量が充足するにつれ、より現実的分析に近づくと思われる。また。諸項目の入力後(あり/なし)のIGRA陽性確率(事後分布として)の推定も接触者健診実施上の有効情報になると思われる。

Report

(4 results)
  • 2019 Annual Research Report   Final Research Report ( PDF )
  • 2018 Research-status Report
  • 2017 Research-status Report

URL: 

Published: 2017-04-28   Modified: 2021-02-19  

Information User Guide FAQ News Terms of Use Attribution of KAKENHI

Powered by NII kakenhi