Project/Area Number |
17K10817
|
Research Category |
Grant-in-Aid for Scientific Research (C)
|
Allocation Type | Multi-year Fund |
Section | 一般 |
Research Field |
Neurosurgery
|
Research Institution | Akita University |
Principal Investigator |
|
Co-Investigator(Kenkyū-buntansha) |
清水 宏明 秋田大学, 医学系研究科, 教授 (20506638)
|
Project Period (FY) |
2017-04-01 – 2023-03-31
|
Project Status |
Completed (Fiscal Year 2022)
|
Budget Amount *help |
¥4,680,000 (Direct Cost: ¥3,600,000、Indirect Cost: ¥1,080,000)
Fiscal Year 2019: ¥780,000 (Direct Cost: ¥600,000、Indirect Cost: ¥180,000)
Fiscal Year 2018: ¥1,820,000 (Direct Cost: ¥1,400,000、Indirect Cost: ¥420,000)
Fiscal Year 2017: ¥2,080,000 (Direct Cost: ¥1,600,000、Indirect Cost: ¥480,000)
|
Keywords | cerebral vasospasm / 脳血管攣縮 / クモ膜下血腫 / pressurized artery / クモ膜下出血 / 脳血管れん縮 / 脳圧亢進 / 脳神経疾患 / 脳血管障害 / くも膜下出血 |
Outline of Final Research Achievements |
We formulated a hypothesis that the rapid increase in intracranial pressure caused by subarachnoid hemorrhage and the subsequent increased environment in brain had an effect as an accelerator factor of delayed cerebral vasospasm. and studied the vasoconstrictor mechanism in an environment with increased intracranial pressure at the onset of subarachnoid hemorrhage . Using a rat cerebral vasospasm model, we planned to study vascular reactivity in a physiological environment using the pressurized artery method. We planned to evaluate vascular contractility. by creating a simulated environment in a thermostatic chamber with increased pressure. Physiologically alive and active rat blood vessels that connective to glass tubes were used. However, no experimental results were obtained in which increased intracranial pressure contributed to increased vasospasm.
|
Academic Significance and Societal Importance of the Research Achievements |
クモ膜下出血による頭蓋内圧上昇が血管リモデリングを誘導し、遅発性脳血管攣縮を発生させる促進因子として影響を与えているという仮説は証明できなかったものの、本仮説を証明することができれば、クモ膜下出血の治療ににおいて、脳動脈瘤破裂の治療とともに、頭蓋内圧をコントロールすることをターゲットにした治療に重きを置くことで予後改善に効果をもたらす可能性がある。 本研究については、生理的活性を保ちながら血管を採取・扱いやすい、長時間生理的活動性を維持できるように技術を改良するとともに恒温槽チャンバーを改良して、液体が蒸発しないように改良を行い、再挑戦したい。
|