• Search Research Projects
  • Search Researchers
  • How to Use
  1. Back to previous page

Exploration of novel prostate cancer predictive markers using patient-derived xenograft models

Research Project

Project/Area Number 17K11132
Research Category

Grant-in-Aid for Scientific Research (C)

Allocation TypeMulti-year Fund
Section一般
Research Field Urology
Research InstitutionUniversity of Miyazaki

Principal Investigator

Terada Naoki  宮崎大学, 医学部, 講師 (60636637)

Project Period (FY) 2017-04-01 – 2020-03-31
Project Status Completed (Fiscal Year 2019)
Budget Amount *help
¥4,680,000 (Direct Cost: ¥3,600,000、Indirect Cost: ¥1,080,000)
Fiscal Year 2019: ¥910,000 (Direct Cost: ¥700,000、Indirect Cost: ¥210,000)
Fiscal Year 2018: ¥1,170,000 (Direct Cost: ¥900,000、Indirect Cost: ¥270,000)
Fiscal Year 2017: ¥2,600,000 (Direct Cost: ¥2,000,000、Indirect Cost: ¥600,000)
Keywords前立腺癌 / マウスモデル / 去勢治療抵抗性 / Il13Ra2 / PDX / 効果予測マーカー / 動物モデル / 去勢抵抗性 / マーカー / ゼノグラフトモデル
Outline of Final Research Achievements

The therapy for castration resistant prostate cancer (CRPC) diversifies while a new therapeutic drug for prostate cancer are present. Development of the biomarker is urgently needed for appropriate therapeutic drug choice. We established Patient derived xenograft(PDX) models for a prostate cancer clinical condition elucidation. The PDX models resembles an original cancer for pathological molecular study. IL13Ra2 which was considered to be a candidate by using PDX was identified as a potential biomarker for predicting castration-resistance of prostate cancer.

Academic Significance and Societal Importance of the Research Achievements

前立腺癌の治療は多様化している、特に去勢治療抵抗性前立腺癌となった病態は進行性であり、治療に難渋する。去勢治療抵抗性前立腺癌に対する新規治療薬は複数あるが、適切に病態を反映するマーカーが存在しない。このため、治療薬の選択が非常に難しい状態である。
前立腺癌病態解明のために新規に樹立したマウスモデルを使用し、前立腺癌去勢療法反応性予測マーカーの発見は臨床的に非常に大きな意義があると考える。

Report

(4 results)
  • 2019 Annual Research Report   Final Research Report ( PDF )
  • 2018 Research-status Report
  • 2017 Research-status Report

URL: 

Published: 2017-04-28   Modified: 2021-02-19  

Information User Guide FAQ News Terms of Use Attribution of KAKENHI

Powered by NII kakenhi