Making a quantifier elimination method based on the theory of comprehensive Groebner systems more efficient
Project/Area Number |
17K12642
|
Research Category |
Grant-in-Aid for Young Scientists (B)
|
Allocation Type | Multi-year Fund |
Research Field |
Theory of informatics
|
Research Institution | Kyushu University (2019-2020) Tokyo University of Science (2017-2018) |
Principal Investigator |
|
Project Period (FY) |
2017-04-01 – 2021-03-31
|
Project Status |
Completed (Fiscal Year 2020)
|
Budget Amount *help |
¥2,860,000 (Direct Cost: ¥2,200,000、Indirect Cost: ¥660,000)
Fiscal Year 2019: ¥780,000 (Direct Cost: ¥600,000、Indirect Cost: ¥180,000)
Fiscal Year 2018: ¥780,000 (Direct Cost: ¥600,000、Indirect Cost: ¥180,000)
Fiscal Year 2017: ¥1,300,000 (Direct Cost: ¥1,000,000、Indirect Cost: ¥300,000)
|
Keywords | 限量子消去 / 包括的グレブナー基底系 / パラメータ付き多項式イデアル / 計算機代数 / 数式処理 / ホップ分岐 / 計算代数 / 包括的グレブナー基底 / グレブナー基底 / 限量子消去法 / 効率化 / 飽和イデアル / 数式処理システム / 実閉体 / エルミート二次形式 / アルゴリズム |
Outline of Final Research Achievements |
We can compute formulas without quantified variables which is equivalent to given first order formulas by using quantifier elimination methods. In order to make quantifier elimination for first order formulas containg many equalities more efficient, we have tried to make a quantifier elimination method based on the theory of comprehensive Groebner systems more efficient. We proposed a method for efficiently computing parametric zero-dimensional saturation ideals, and a method for computing Hermitian quadratic forms of parametric zero-dimensional radical ideals without computing such ideals.
|
Academic Significance and Societal Importance of the Research Achievements |
一階述語論理式の記述能力は高く、数学だけでなく物理・工学などで発生する多くの数理問題や数理モデルを正確に表現できる。そうした一階述語論理式から、限量子を消去した、等価な論理式を計算する限量子消去法は、数理問題や数理モデルに対する正確かつ簡略化された表現を与え、問題やモデルの本質を明らかにする。等式制約は不等式制約に比べて強い制約を持っていることから数理問題や数理モデルの本質となっている場合も多いため、等式制約の多い一階述語論理式に対する効率化は重要である。
|
Report
(5 results)
Research Products
(26 results)
-
[Journal Article] On parametric border bases2020
Author(s)
Yosuke Sato, Hiroshi Sekigawa, Ryoya Fukasaku, Katsusuke Nabeshima
-
Journal Title
Lecture Notes in Computer Science
Volume: 11989
Pages: 10-15
DOI
ISBN
9783030431198, 9783030431204
Related Report
Peer Reviewed
-
-
-
-
-
-
-
[Journal Article] On Real Roots Counting for Non-radical Parametric Ideals2017
Author(s)
Fukasaku Ryoya、Sato Yosuke
-
Journal Title
Proceedings of Mathematical Aspects of Computer and Information Sciences - 7th International Conference, MACIS 2017, Lecture Notes in Computer Science
Volume: 10693
Pages: 258-263
DOI
ISBN
9783319724522, 9783319724539
Related Report
Peer Reviewed / Open Access / Int'l Joint Research
-
-
-
-
-
-
-
-
[Presentation] On Parametric Border Bases2019
Author(s)
Yosuke Sato, Hiroshi Sekigawa, Ryoya Fukasaku, Katsusuke Nabeshima
Organizer
Mathematical Aspects of Computer and Information Sciences - 8th International Conference, MACIS 2019
Related Report
Int'l Joint Research
-
-
-
-
-
-
-
-
-
-