• Search Research Projects
  • Search Researchers
  • How to Use
  1. Back to previous page

Construction of concept model based on segmenting multimodal time-series information

Research Project

Project/Area Number 17K12758
Research Category

Grant-in-Aid for Young Scientists (B)

Allocation TypeMulti-year Fund
Research Field Intelligent robotics
Research InstitutionThe University of Electro-Communications

Principal Investigator

Nakamura Tomoaki  電気通信大学, 大学院情報理工学研究科, 准教授 (50723623)

Project Period (FY) 2017-04-01 – 2020-03-31
Project Status Completed (Fiscal Year 2019)
Budget Amount *help
¥2,730,000 (Direct Cost: ¥2,100,000、Indirect Cost: ¥630,000)
Fiscal Year 2019: ¥1,040,000 (Direct Cost: ¥800,000、Indirect Cost: ¥240,000)
Fiscal Year 2018: ¥910,000 (Direct Cost: ¥700,000、Indirect Cost: ¥210,000)
Fiscal Year 2017: ¥780,000 (Direct Cost: ¥600,000、Indirect Cost: ¥180,000)
Keywords教師なし学習 / 物体概念 / 隠れセミマルコフモデル / マルチモーダル / 概念形成 / マルチモーダル学習 / 階層ベイズ / マルチモーダルカテゴリゼーション
Outline of Final Research Achievements

The purpose of this study is to develop a method to learn concepts using multimodal information that can be acquired by a robot. We developed a concept acquisition model using time-series multimodal information, and a method for learning concepts and word meanings interactively using joint attention. This allows unsupervised segmentation and classification of time-series information from the robot's sensors. Furthermore, by using joint attention, robots can learn the concepts in a cluttered environment where it is difficult for robots to learn by conventional methods.

Academic Significance and Societal Importance of the Research Achievements

ロボットが取得可能なセンサデータはラベル付けされておらず,また連続的な時系列情報である.このようなデータから教師なしでロボットによる学習を実現した.さらに,従来のロボットによる物体学習に関する研究では,教示対象物体以外が存在しない,または存在していたとして少数しかない環境で学習が行われていた.一方,本研究では,より実際の家庭環境に近い,物体が乱雑に置かれているような環境におけるロボットの物体学習を実現した.

Report

(4 results)
  • 2019 Annual Research Report   Final Research Report ( PDF )
  • 2018 Research-status Report
  • 2017 Research-status Report
  • Research Products

    (25 results)

All 2020 2019 2018 2017

All Journal Article (4 results) (of which Peer Reviewed: 4 results) Presentation (21 results) (of which Int'l Joint Research: 6 results,  Invited: 5 results)

  • [Journal Article] Neuro-SERKET: Development of Integrative Cognitive System Through the Composition of Deep Probabilistic Generative Models2020

    • Author(s)
      Tadahiro Taniguchi, Tomoaki Nakamura, Masahiro Suzuki, Ryo Kuniyasu, Kaede Hayashi, Akira Taniguchi, Takato Horii and Takayuki Nagai
    • Journal Title

      New Generation Computing

      Pages: 1-26

    • Related Report
      2019 Annual Research Report
    • Peer Reviewed
  • [Journal Article] HVGH: Unsupervised Segmentation for High-dimensional Time Series Using Deep Neural Compression and Statistical Generative Model2019

    • Author(s)
      Masatoshi Nagano, Tomoaki Nakamura, Takayuki Nagai, Daichi Mochihashi, Ichiro Kobayashi and Wataru Takano
    • Journal Title

      Frontiers in Robotics and AI

      Volume: 6 Pages: 1-15

    • Related Report
      2019 Annual Research Report
    • Peer Reviewed
  • [Journal Article] Survey on frontiers of language and robotics2019

    • Author(s)
      Tadahiro Tangiuchi, Daichi Mochihashi, Takayuki Nagai, Satoru Uchida, Naoya Inoue, Ichiro Kobayashi, Tomoaki Nakamura, Yoshinobu Hagiwara, Naoto Iwahashi and Tetsunari Inamura
    • Journal Title

      Advanced Robotics

      Volume: 33 Pages: 700-730

    • Related Report
      2019 Annual Research Report
    • Peer Reviewed
  • [Journal Article] Ensemble-of-Concept Models for Unsupervised Formation of Multiple Categories2018

    • Author(s)
      Tomoaki Nakamura, and Takayuki Nagai
    • Journal Title

      IEEE Transactions on Cognitive and Developmental Systems

      Volume: 10 Pages: 1043-1057

    • Related Report
      2018 Research-status Report
    • Peer Reviewed
  • [Presentation] A Framework for Construction of Multimodal Learning Models2019

    • Author(s)
      Tomoaki Nakamura
    • Organizer
      IROS2019: Workshop on Deep Probabilistic Generative Models for Cognitive Architecture in Robotics
    • Related Report
      2019 Annual Research Report
    • Int'l Joint Research / Invited
  • [Presentation] High-dimensional Motion Segmentation by Variational Autoencoder and Gaussian Processes2019

    • Author(s)
      Masatoshi Nagano, Tomoaki Nakamura, Takayuki Nagai, Daichi Mochihashi, Ichiro Kobayashi and Wataru Takano,
    • Organizer
      IROS2019
    • Related Report
      2019 Annual Research Report
    • Int'l Joint Research
  • [Presentation] Construction of a Multimodal Learning Model Based on Integrating Stochastic Models2019

    • Author(s)
      Ryo Kuniyasu, Tomoaki Nakamura, Takayuki Nagai, and Tadahiro Taniguchi,
    • Organizer
      IROS2019: Workshop on Deep Probabilistic Generative Models for Cognitive Architecture in Robotics, Nov. 2019
    • Related Report
      2019 Annual Research Report
    • Int'l Joint Research
  • [Presentation] LSTM と逆強化学習を用いた手順指示の学習2019

    • Author(s)
      秋山祐威,中村友昭
    • Organizer
      計測自動制御学会システムインテグレーション部門講演会
    • Related Report
      2019 Annual Research Report
  • [Presentation] Slice Samplingに基づく教師なし分節化における推論の高速化2019

    • Author(s)
      長野匡隼,中村友昭,長井隆行,持橋大地,小林一郎,高野渉
    • Organizer
      情報論的学習理論ワークショップ
    • Related Report
      2019 Annual Research Report
  • [Presentation] 複数の物体が存在する環境下でのロボットによる語意学習2019

    • Author(s)
      工藤仁紀,中村友昭
    • Organizer
      日本ロボット学会学術講演会
    • Related Report
      2019 Annual Research Report
  • [Presentation] 確率モデルとニューラルネットワークの相互作用による教師なしマルチモーダル学習2019

    • Author(s)
      國安瞭,中村友昭,長井隆行,谷口忠大
    • Organizer
      日本ロボット学会学術講演会
    • Related Report
      2019 Annual Research Report
  • [Presentation] HSMMを用いた物体と動作の時間的分節化によるロボットの統合概念学習2019

    • Author(s)
      布川遼太郎,中村友昭,長井隆行
    • Organizer
      日本ロボット学会学術講演会
    • Related Report
      2019 Annual Research Report
  • [Presentation] 確率モデルの統合によるマルチモーダル学習モデルの構築2019

    • Author(s)
      國安瞭,中村友昭,長井隆行,谷口忠大
    • Organizer
      人工知能学会全国大会
    • Related Report
      2019 Annual Research Report
  • [Presentation] HVGH: 高次元時系列データの深層圧縮と教師なし分節化2019

    • Author(s)
      長野匡隼, 中村友昭, 長井隆行, 持橋大地, 小林一郎, 高野渉
    • Organizer
      人工知能学会全国大会
    • Related Report
      2019 Annual Research Report
  • [Presentation] 霊長類における身体動作時系列の分節推移構造推定2019

    • Author(s)
      三村喬生, 中村友昭, 松本惇平, 西条寿夫, 須原哲也, 持橋大地, 南本敬史
    • Organizer
      人工知能学会全国大会
    • Related Report
      2019 Annual Research Report
  • [Presentation] 時系列マルチモーダル情報の分節・分類に基づく物体と動作の統合概念学習2018

    • Author(s)
      布川遼太郎,宮澤和貴,中村友昭,長井隆行,金子 正秀
    • Organizer
      人工知能学会全国大会
    • Related Report
      2018 Research-status Report
  • [Presentation] VAEとガウス過程による高次元データの圧縮と同時分節化2018

    • Author(s)
      長野匡隼,中村友昭,長井隆行,持橋大地,小林一郎,高野渉,金子正秀
    • Organizer
      情報論的学習理論ワークショップ
    • Related Report
      2018 Research-status Report
  • [Presentation] Sequence Pattern Extraction by Segmenting Time Series Data Using GP-HSMM with Hierarchical Dirichlet Process2018

    • Author(s)
      Masatoshi Nagano, Tomoaki Nakamura, Takayuki Nagai, Daichi Mochihashi, Ichiro Kobayashi, Masahide Kaneko
    • Organizer
      IEEE/RSJ International Conference on Intelligent Robots and Systems
    • Related Report
      2018 Research-status Report
    • Int'l Joint Research
  • [Presentation] マルチモーダル情報に基づくロボットによる概念・言語獲得2018

    • Author(s)
      中村友昭
    • Organizer
      玉川大学 脳科学研究所 社会神経科学共同研究拠点研究会
    • Related Report
      2018 Research-status Report
    • Invited
  • [Presentation] マルチモーダルカテゴリゼーションに基づくロボットによる概念・言語獲得2018

    • Author(s)
      中村友昭
    • Organizer
      脳型人工知能とその応用ミニワークショップ
    • Related Report
      2018 Research-status Report
    • Invited
  • [Presentation] Analysis of the Effect of Infant-Directed Speech on Mutual Learning of Concepts and Language Based on MLDA and Unsupervised Word Segmentation2017

    • Author(s)
      Miyuki Funada, Tomoaki Nakamura, Takayuki Nagai and Masahide Kaneko
    • Organizer
      IROS2017: Workshop on Machine Learning Methods for High-Level Cognitive Capabilities in Robotics
    • Related Report
      2017 Research-status Report
    • Int'l Joint Research
  • [Presentation] Toward Realization of Intelligent Robots That Can Learn Concepts and Language2017

    • Author(s)
      Tomoaki Nakamura
    • Organizer
      IROS2017: Workshop on Machine Learning Methods for High-Level Cognitive Capabilities in Robotics
    • Related Report
      2017 Research-status Report
    • Int'l Joint Research / Invited
  • [Presentation] マルチモーダルカテゴリゼーション:階層ベイズモデルに基づくロボットによる概念・言語獲得2017

    • Author(s)
      中村友昭
    • Organizer
      第20回情報論的学習理論ワークショップ
    • Related Report
      2017 Research-status Report
    • Invited
  • [Presentation] 時系列マルチモーダル情報の分節・分類に基づくロボットによる概念の学習2017

    • Author(s)
      布川遼太郎,宮澤和貴,中村友昭,長井隆行,金子正秀
    • Organizer
      情報処理学会全国大会
    • Related Report
      2017 Research-status Report
  • [Presentation] 複数概念の時間的分節化に基づくロボットによる上位概念の学習2017

    • Author(s)
      中村友昭,宮澤和貴,青木達哉,長井隆行,金子正秀
    • Organizer
      人工知能学会全国大会
    • Related Report
      2017 Research-status Report

URL: 

Published: 2017-04-28   Modified: 2021-02-19  

Information User Guide FAQ News Terms of Use Attribution of KAKENHI

Powered by NII kakenhi