Project/Area Number |
17K13025
|
Research Category |
Grant-in-Aid for Young Scientists (B)
|
Allocation Type | Multi-year Fund |
Research Field |
Biomedical engineering/Biomaterial science and engineering
|
Research Institution | Institute of Physical and Chemical Research |
Principal Investigator |
Yamato Masanori 国立研究開発法人理化学研究所, 生命機能科学研究センター, 研究員 (50565778)
|
Project Period (FY) |
2017-04-01 – 2021-03-31
|
Project Status |
Completed (Fiscal Year 2020)
|
Budget Amount *help |
¥3,900,000 (Direct Cost: ¥3,000,000、Indirect Cost: ¥900,000)
Fiscal Year 2019: ¥1,040,000 (Direct Cost: ¥800,000、Indirect Cost: ¥240,000)
Fiscal Year 2018: ¥1,560,000 (Direct Cost: ¥1,200,000、Indirect Cost: ¥360,000)
Fiscal Year 2017: ¥1,300,000 (Direct Cost: ¥1,000,000、Indirect Cost: ¥300,000)
|
Keywords | 近赤外低反応レベルレーザー / 脳内神経炎症 / エネルギー代謝 / 大気圧プラズマ / 近赤外レーザー / 近赤外光 / メタボローム解析 |
Outline of Final Research Achievements |
Near-infrared laser light has a relatively high penetrability in biological tissues and showed anti-inflammatory effect and improvement of energy metabololism, and so on. However, the effect of the light in the brain has not been elucidated. We have reported that the irradiation of low-level laser to rat brain reduced neuroinflammation. Such a brain showed alterations of energy metabolism and neurotransmitters including GABA and glutamate, revealed by metabolome analysis. On the other hand, nonequilibrium atmospheric pressure plasma has the potential for a wide range of medical applications, including wound healing, and malignant cell apoptosis, and so on. We confirmed that the irradiation of the plasma to the brain affected the inflammatory response and cell proliferation. To investigate the relationship between their effects and alterations of energy metabolism, we currently perform global analysis of gene expression
|
Academic Significance and Societal Importance of the Research Achievements |
近年PETなどのイメージング技術の発達により、うつ病、慢性疲労症候群など多くの神経疾患に脳内の慢性的な炎症が関係していることがわかってきた。しかしながら、脳内の慢性炎症を効率的に抑制するためにはよい薬剤がなく、困難である。生体透過性に優れる近赤外光や多くの分野で医療応用が期待される安全な大気圧プラズマなどの工学系を用いた基礎研究からそれらを抑制する手法の確立に近づくことができれば治療の一助となるものと期待される。
|